Types of Errors:

Personal errors due to bias or mistakes.
Systematic errors due to miscalibration of instruments, personal bias, or reaction time.
Random errors are unknown or unpredictable, such as voltage or temperature fluctuations, vibration, etc.
Accuracy - how close measurement comes to accepted value
Precision - how consistent or repeatable measurements are
Calculation of Errors:
Multiplication: operation: $A=L \times W$

Division:
error: $\Delta A= \pm(L \times \Delta W+W \times \Delta L)$
operation: $D=\frac{M}{V}$
error: $\Delta D= \pm\left(\frac{\Delta M}{V}+\frac{M \times \Delta V}{V^{2}}\right)$

$$
\begin{aligned}
& g=9.8 \mathrm{~m} / \mathrm{s}^{2}=32 \mathrm{f} / \mathrm{s}^{2} \\
& g_{\text {moon }}=1.62 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Quadratic Equation:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Law of Cosines:

$$
R=\sqrt{A^{2}+B^{2}-2 A B \cos \gamma}
$$

$$
\sin \theta=\frac{R}{B \sin \gamma}
$$

Newton's Laws:

First Law: Law of Inertia. An object at rest will remain at rest unless acted on by an external force. An object in motion will remain in motion unless ...
Second Law: $\Sigma F=m a, \quad \Sigma \tau=I \alpha$ The sum of external forces on a object is equal to its mass (or inertia for rotational forces) times the acceleration.
Third Law: Every action has an equal and opposite reaction.
Law of Gravity: $F=$ force of attraction exerted on each body

$$
F=G \frac{m_{1} m_{2}}{r^{2}} \quad \begin{aligned}
& G=\text { gravitational constant } 6.67 \times 10^{-11} \\
& {\left[\mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}\right] \text { or }\left[\mathrm{m}^{3} / \mathrm{kg} \cdot \mathrm{~s}^{2}\right]} \\
& r=\text { distance between centers }[\mathrm{m}]
\end{aligned}
$$

Formulas for Velocity: [units: $\mathrm{v}: \mathrm{m} / \mathrm{s}$; a: $\mathrm{m} / \mathrm{s}^{2} ; ~ x: m ; t$: $s]$

$$
\begin{array}{ll}
v=v_{0}+a t & (\text { for constant } a) \\
\bar{v}=\frac{v_{0}+v}{2} & \text { (for constant a) average velocity } \\
x=v_{0} t+\frac{1}{2} a t^{2} & \text { (for constant } a) \\
v^{2}=v_{0}{ }^{2}+2 a x & \text { (for constant a) }
\end{array}
$$

Rocket Science: The relationship between velocity and the burning of fuel.
$v_{f}-v_{i}=u \ln \frac{M_{i}}{M_{f}} \quad \begin{aligned} & u=\text { speed of the exhaust } \\ & \text { relative the to rocket }[\mathrm{m} / \mathrm{s}]\end{aligned}$

Addition of Multiple Vectors:

$\vec{R}=\vec{A}+\vec{B}+\vec{C} \quad$ Resultant $=$ Sum of the vectors
$\vec{R}_{x}=\vec{A}_{x}+\vec{B}_{x}+\vec{C}_{x} \quad x$-component $\quad A_{x}=A \cos \theta$
$\vec{R}_{y}=\vec{A}_{y}+\vec{B}_{y}+\vec{C}_{y} \quad y$-component $\quad A_{y}=A \sin \theta$
$R=\sqrt{R_{x}{ }^{2}+R_{y}{ }^{2}}$
Magnitude (length) of R
$\theta_{R}=\tan ^{-1} \frac{R_{y}}{R_{x}} \quad$ or $\tan \theta_{R}=\frac{R_{y}}{R_{x}} \quad$ Angle of the resultant

Unit Vectors:

Cross Product or Vector Product:
Positive direction:

$$
\begin{array}{ll}
i \times j=k \quad & j \times i=-k \\
& i \times i=0
\end{array}
$$

Dot Product or Scalar Product:

$$
i \cdot j=0 \quad i \cdot i=1
$$

Velocity is the derivative of position with respect to time:

$$
\mathbf{v}=\frac{d}{d t}(x \mathbf{i}+y \mathbf{j}+z \mathbf{k})=\frac{d x}{d t} \mathbf{i}+\frac{d y}{d t} \mathbf{j}+\frac{d z}{d t} \mathbf{k}
$$

Acceleration is the derivative of velocity with respect to time:

$$
\mathbf{a}=\frac{d}{d t}\left(v_{x} \mathbf{i}+v_{y} \mathbf{j}+v_{z} \mathbf{k}\right)=\frac{d v_{x}}{d t} \mathbf{i}+\frac{d v_{y}}{d t} \mathbf{j}+\frac{d v_{z}}{d t} \mathbf{k}
$$

Mass/Density: [kilograms]
$M=V \times D$
mass $=$ volume \times density

Projectile Motion:

$v_{x 0}=v_{0} \cos \theta_{0} \quad$ horizontal component of velocity
$v_{y 0}=v_{0} \sin \theta_{0} \quad$ vertical component of velocity
$x=v_{x 0} t \quad$ horizontal distance
$v_{y}=v_{y 0}-g t \quad$ to find apex, let $v_{y}=0$
$y=y_{0}+v_{y 0} t-\frac{1}{2} g t^{2} \quad$ vertical distance
$y=\left(\tan \theta_{0}\right) x-\frac{g x^{2}}{2\left(v_{0} \cos \theta_{0}\right)^{2}} \quad$ vertical distance
$v_{y}{ }^{2}=v_{y 0}{ }^{2}-2 g y \quad$ vertical velocity

Relative Motion: $\quad v_{P A}=v_{P B}+v_{B A}$
The relative velocity of object P with respect to A is equal to the velocity of P with respect to B plus the velocity of B with respect to A.
For velocities approaching the speed of light, the formula changes to: $\quad v_{P A}=\frac{v_{P B}+v_{B A}}{1+v_{P B} v_{B A} / c^{2}}$
$c=$ the speed of light $=299,792,458 \mathrm{~m} / \mathrm{s}$

Inclined Plane: [F and W are in Newtons; m is kilograms]
$F=m g \sin \theta$
$W=m g$
$F_{n}=m g \cos \theta$
(the normal force)

$F_{k}=\mu_{k} F_{n} \quad$ (force of friction, opposite the direction of movement)
$\tan \theta=\mu_{k} \quad$ The coefficient of friction μ_{k} is found when the angle θ is adjusted for zero acceleration of the sliding object.
$a=g \sin \theta \quad$ (acceleration)

Drag:

$$
\begin{array}{ll}
D=\frac{1}{2} C \rho A v^{2} & \left.\begin{array}{l}
D=\text { Drag Force }[\mathrm{N}] \\
C
\end{array}\right) \\
v_{t}=\sqrt{\frac{2 m g}{C \rho A}} & \left.\begin{array}{l}
\rho=\text { Coeficient of drag }\left[\mathrm{density}\left[\mathrm{~kg} / \mathrm{m}^{3}\right] \text { (air: } 1.2, \text { water: } 1000\right) \\
A
\end{array}\right)=\text { effective cross-sectional area }\left[\mathrm{m}^{2}\right] \\
v=\text { speed }[\mathrm{m} / \mathrm{s}] \\
v_{\mathrm{t}}=\text { Terminal Velocity }[\mathrm{m} / \mathrm{s}] \\
g=\text { acceleration due to gravity }\left[9.8 \mathrm{~m} / \mathrm{s}^{2}\right]
\end{array}
$$

Force: [F is in Newtons; m is kilograms]

Newtons $=\mathrm{kg} \times \mathrm{m} / \mathrm{s}^{2}=\frac{\text { grams } \times g}{1000}=$ dynes $\times 10,000$
dynes $=$ grams $\times \mathrm{cm} / \mathrm{s}^{2} \quad 1 \mathrm{lb}=4.448 \mathrm{~N}$
$F=m a \quad$ force $=$ mass X acceleration
$F=\frac{\Delta \rho}{\Delta t} \quad$ force $=\frac{\text { change in momentum }}{\text { time interval }}$
$F=\frac{J}{\Delta t} \quad$ force $=\frac{\text { impulse }}{\text { time interval }}$
conservative force - work done is independent of the path taken non-conservative force - depends on the path taken
$F=G \frac{m_{1} m_{2}}{r^{2}}$
force of gravitational attraction, where G is the constant of universal gravitation

$$
6.673 \times 10^{-11} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{~kg}^{2}}
$$

Atwood's Machine:

$$
\text { Acceleration in } \mathrm{m} / \mathrm{s}^{2} \text { : }
$$

$a=\left(\frac{m_{2}-m_{1}}{m_{1}+m_{2}}\right) g$
Tension in Newtons:

$$
T=\left(\frac{2 m_{1} m_{2}}{m_{1}+m_{2}}\right) g
$$

Tension:
[Newtons]

$T=m(g+a) \quad$ (where m is accelerating upward)
$T=m(g-a) \quad$ (where m is accelerating downward)

Work: [joules or Newton-meters]

$W=(F \cos \theta) s \quad$ (work done on the object by $F)$
$W=F \bullet d \quad$ work $=$ force \times displacement
$W_{g}=m g y_{i}-m g y_{f}=P E_{i}-P E_{f} \quad$ (work done by gravity, y is
vertical distance in meters)
$W=K E_{f}-K E_{i}$
The work done by a conservative force on a particle is independent of the path taken.
see also: Energy, Spring
Power: [watts] $\quad P=\frac{d W}{d t}$
Power is the rate of work. $\bar{P}=\frac{W}{\Delta t}=F \bar{V} \quad$ watts $=\frac{\text { joules }}{\text { second }}$

Energy: [joules]

$K E=\frac{1}{2} m v^{2} \quad$ (kinetic energy)
$P E=m g y \quad$ (gravitational potential energy, y is vertical distance in meters)
$\Delta K E=K E_{f}-K E_{i}=\frac{1}{2} m v^{2}-\frac{1}{2} m v_{0}{ }^{2}=$ Work
A falling object loses potential energy as it gains kinetic energy. In an isolated system, energy can be transferred from one type to another but total energy remains the same.
$W_{\text {net }}=\Delta K E=-\Delta P E$
$E_{\text {total }}=K E+P E$ (mechanical energy)
$P E_{i}+K E_{i}=P E_{f}+K E_{f} \quad[i=$ initial; $f=$ final, energy is conserved]
$m g y_{i}+\frac{1}{2} m v_{i}{ }^{2}=m g y_{f}+\frac{1}{2} m v_{f}{ }^{2} \quad[y=$ vertical distance $]$
$E=m c^{2} \quad E$ is the mass energy, m is mass, c is the speed light $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
See also: Rotation and Torque

Spring: $\quad[F$ is in Newtons; W is in Joules; x is in meters; k is in Newtons per meter: N / m]
$F=k x$
Hooke's Law (force required to compress a spring with a spring constant k a distance x)
$\bar{F}=\frac{1}{2} k x \quad$ (average force required to compress a spring--or average force output from a spring in decompression over a distance x)
$W=\frac{1}{2} k x^{2} \quad$ (work done on a spring by an applied force)
$W=-\frac{1}{2} k x^{2} \quad$ (work done by a spring)
$P E_{s}=\frac{1}{2} k x^{2} \quad$ (elastic potential energy)

Simple Harmonic Motion:

$T=\frac{1}{f} \quad$ (T is period in seconds; f is frequency in Hz)
$T=2 \pi \sqrt{\frac{m}{k}} \quad \begin{aligned} T & =\operatorname{period}(\mathrm{s}) \\ m & =\operatorname{mass}(\mathrm{kg})\end{aligned}$

$$
k=\text { spring constant }(\mathrm{N} / \mathrm{m})
$$

$a=-\frac{k}{m} x \quad$ (acceleration) x is the location in meters
$v= \pm \sqrt{\frac{k}{m}\left(A^{2}-x^{2}\right)} \quad(A$ is amplitude in $m ; x$ is position)
$x=A \cos (2 \pi f t) \quad(x$ is position in $\mathrm{m} ; f$ is frequency Hz$)$

Pendulum:

$T=\sqrt{\frac{L}{g}} \quad$ First Order Approximation for small angles
$T=2 \pi \sqrt{\frac{L}{g}} \quad L$ is length in $\mathrm{m} ; g$ is gravity
$T=2 \pi \sqrt{\frac{L}{g}}\left(1+\frac{1}{4} \sin ^{2} \frac{\theta}{2}+\frac{9}{64} \sin ^{4} \frac{\theta}{2}\right) \quad \begin{aligned} & \text { Third Order } \\ & \text { Approximation }\end{aligned}$

Waves:

$v=f \lambda \quad$ (f is frequency in $\mathrm{Hz} ; \lambda$ is wavelength in m)
$v=\sqrt{\frac{F}{\mu}} \quad \begin{aligned} & (F \text { is tension in } \mathrm{N} ; \mu \text { is mass per unit length of } \\ & \text { string in } \mathrm{kg} / \mathrm{m})\end{aligned}$ see also: Oscillation

Collisions: In all collisions, momentum is conserved and the center of mass is unaffected. In an elastic collision, kinetic energy $K E=\frac{1}{2} m v^{2}$ is conserved.

$$
\begin{array}{ll}
m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f} & \text { (momentum) } \\
v_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1 i}+\frac{2 m_{2}}{m_{1}+m_{2}} v_{2 i} & \text { (elastic only) } \\
v_{2 f}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{1 i}+\frac{m_{2}-m_{1}}{m_{1}+m_{2}} v_{2 i} & \text { (elastic only) }
\end{array}
$$

Momentum: $[\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}] \quad \mathbf{p}=m v \quad \sum F=\frac{d \mathbf{p}}{d t}$
Linear Momentum in a system of particles:
$\begin{array}{ll}\mathbf{P}=M \mathbf{v}_{c m} & \begin{array}{l}M=\text { total mass of the system [m] } \\ \mathbf{v}_{\mathrm{cm}}=\text { velocity of the center of mass }[\mathrm{m} / \mathrm{s}]\end{array}\end{array}$
Impulse: $[\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}] \quad J=\Delta \mathbf{p}=F \Delta t=m v_{f}-m v_{i}$ impulse $=$ force \times duration or the change in momentum see also Force

Center of Mass: The center of mass of a body or a system of bodies is the point that moves as though all of the mass were concentrated there and all external forces were applied there.
$x_{c m}=\frac{1}{M} \sum_{i=1}^{n} m_{i} x_{i}$
This can be applied to y and z axis as well.
$x_{c m}=$ distance from origin $[\mathrm{m}]$
$M=$ total mass $[\mathrm{m}]$
$m=$ mass of object $[m]$
$x=$ distance of object from origin
$\quad[\mathrm{m}]$

Rotation and Torque: [θ is in radians]

$\omega=\frac{\Delta \theta}{\Delta t}$	average angular speed [$\mathrm{rad} / \mathrm{s}$]
$\omega=\omega_{0}+\alpha t$	(if constant acceleration) [rad/s]
$\theta=\omega_{0} t+\frac{1}{2} \alpha t^{2}$	(if constant acceleration) [radians]
$\omega^{2}=\omega_{0}{ }^{2}+2 \alpha \theta$	(if constant acceleration)
$\bar{\alpha}=\frac{\Delta \omega}{\Delta t}$	average angular acceleration [$\mathrm{rad} / \mathrm{s}^{2}$]
$v_{t}=r \omega$	tangential speed [m / s]
$\nu_{c m}=r \omega$	velocity of the center of mass [m / s]
$a_{t}=r \alpha$	$\begin{aligned} & a_{t}=\text { tangential acceleration }\left[\mathrm{m} / \mathrm{s}^{2}\right] \\ & r=\text { radius }[\mathrm{m}] \\ & \alpha=\text { angular acceleration }\left[\mathrm{rad} / \mathrm{s}^{2}\right] \end{aligned}$
$a_{r}=\frac{v_{t}{ }^{2}}{r}=r \omega^{2}$	$\begin{aligned} & a_{\mathrm{r}}=\text { radial acceleration or } \\ & \quad \text { centripetal acceleration }\left[\mathrm{m} / \mathrm{s}^{2}\right] \\ & \quad \text { (directed inward to center) } \\ & v=\text { speed }[\mathrm{m} / \mathrm{s}] \\ & r=\text { radius }[\mathrm{m}] \\ & \omega=\text { angular speed }[\mathrm{rad} / \mathrm{s}] \end{aligned}$
$a=\sqrt{a_{t}^{2}+a_{r}^{2}}$	total acceleration [$\mathrm{m} / \mathrm{s}^{2}$]
$F_{c}=m a_{r}=m-$	${ }^{2} \quad F_{\mathrm{c}}=$ centripetal force [N$]$ $a_{\mathrm{r}}=$ radial acceleration or centripetal acceleration $\left[\mathrm{m} / \mathrm{s}^{2}\right]$ (directed inward to center)
$T=\frac{2 \pi r}{v}=\frac{2 \pi}{\omega}$	$T=$ period [s]

Kepler's Third Law (planetary motion)
$T^{2}=\left(\frac{4 \pi^{2}}{G M_{s}}\right) r^{3}=K_{s} r^{3}$
where $T=$ the period

$$
G=6.673 \times 10^{-11} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{~kg}^{2}}
$$

$$
K_{s}=2.97 \times 10^{-19} \frac{\mathrm{~s}^{2}}{\mathrm{~m}^{3}}
$$

Torque:

$$
\begin{aligned}
& \tau=\mathbf{r} \times \mathbf{F} \quad \tau=\text { torque (vector) (positive is in the } \\
& \text { counterclockwise direction) [} \mathrm{N} \cdot \mathrm{~m} \text {] } \\
& \tau=r F_{t}=r \perp F \quad \tau=\text { magnitude of the torque } \\
& =r F \sin \phi \\
& \sum \tau=I \alpha \\
& r=\operatorname{radius} \text { [} m \text {] } \\
& F=\text { force [} \mathrm{N} \text {] } \\
& r \perp=\text { perpendicular distance } \\
& \text { between axis and an extended } \\
& \text { line running through } F \text {. } \\
& \phi=\text { the angle between } r \text { and } F\left[^{\circ}\right. \text { or } \\
& \text { rad] } \\
& \begin{array}{l}
\Sigma \tau=\text { the net torque acting on a } \\
\text { body }[\mathrm{N} \cdot \mathrm{~m}]
\end{array} \\
& I=\text { Inertia }\left[\mathrm{kg} \cdot \mathrm{~m}^{2}\right] \\
& \alpha=\text { angular acceleration [rad } / s^{2} \text {] }
\end{aligned}
$$

Inertia: $\quad\left[\mathrm{kg} \cdot \mathrm{m}^{2}\right] \quad I=\sum m r^{2}$ (inertia) orbiting object: $\quad I=m r^{2} \quad$ ring: $\quad I_{r}=\frac{1}{2} m\left(r_{1}{ }^{2}+r_{2}{ }^{2}\right)$ sphere: $\quad l_{s}=\frac{2}{5} m r^{2} \quad$ disk or cyl.: $\quad l_{d}=\frac{1}{2} m r^{2}$ thin rod (on side): $\quad I=\frac{1}{12} m l^{2} \quad \operatorname{rod}\left(\right.$ axis end): $\quad I=\frac{1}{3} m l^{2}$ cylinder on its side (axis ctr): $I=m\left(\frac{r^{2}}{4}+\frac{l^{2}}{12}\right)$
Parallel Axis Theorem: If you know the rotational inertia of a body about any axis that passes through its center of mass, you can find its rotational intertia about any other axis parallel to that axis with the parallel-axis theorem:

$$
\begin{array}{ll}
I=I_{c m}+M h^{2} \quad \begin{array}{l}
I=\text { Inertia }\left[\mathrm{kg} \cdot \mathrm{~m}^{2}\right] \\
\\
I_{c m}= \\
\\
\\
\\
\\
\\
\\
\\
\\
=\text { nasertia }\left[\mathrm{kg} \cdot \operatorname{mass} \cdot \mathrm{~m}^{2}\right] \\
\\
h=\operatorname{disg}] \\
\text { the axis }[\mathrm{m}]
\end{array}
\end{array}
$$

Kinetic Energy: [Joules]
$K E_{r}=\frac{1}{2} I \omega^{2} \quad$ rotational kinetic energy
$K E_{t}=\frac{1}{2} m v^{2} \quad$ translational kinetic energy
$K E=\frac{1}{2} I_{c m} \omega^{2}+\frac{1}{2} m v_{c m}{ }^{2} \quad$ rolling kinetic energy

Angular Momentum:

$\ell=I \omega \quad$ rigid body on fixed axis $\left[\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}\right.$ or $\left.\mathrm{J} \cdot \mathrm{s}\right]$
$\ell=\mathbf{r} \times \mathbf{p}=m(\mathbf{r} \times \mathbf{v}) \quad \ell=$ angular momentum of a particle [J.s]
$\mathbf{r}=$ a position vector
$\mathbf{p}=$ linear momentum $\left[\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}\right.$ or J.s]
$m=$ mass [kg]
$\mathbf{v}=$ linear velocity [m/s]
Angular momentum is conserved when torque is zero.
$I_{i} \omega_{i}=I_{f} \omega_{f}$
An Optimally Banked Curve: $\quad \tan \theta=\frac{v^{2}}{r g}$

Elasticity in Length: Young's Modulus [Pa or N / m^{2}]
$Y=\frac{F l_{0}}{A \Delta L} \quad \begin{array}{lll}F=\text { force }[N] \\ A=\text { crossectional } \\ \text { area }\left[m^{2}\right]\end{array} \quad \begin{aligned} & l_{0}=\text { initial length }[m] \\ & \Delta L=\text { chg. in length }[m]\end{aligned}$
Volume Elasticity: Bulk Modulus [Pa or $\mathrm{N} / \mathrm{m}^{2}$]
$B=-\frac{V \Delta P}{\Delta V} \quad \begin{array}{ccc}V=\text { original vol. }\left[m^{3}\right] & \Delta P=\text { change in } \\ \Delta V=\text { chg. in vol. } & \text { pressure }[P a \text { or } \\ {\left[m^{3}\right]} & \left.N / m^{2}\right]\end{array}$

Pressure in a liquid: (due to gravity) [Pa or $\mathrm{N} / \mathrm{m}^{2}$]
$1 \mathrm{~atm}=1.01 \times 10^{5} \mathrm{~Pa}=760 \mathrm{torr}=14.7 \mathrm{in}^{2}$
$P=P_{0}+\rho g h \quad P_{0}=$ atmospheric pressure if applicable
[Pa or $\mathrm{N} / \mathrm{m}^{2}$]
$\rho=$ density $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$
$g=$ gravity $\left[\mathrm{m} / \mathrm{s}^{2}\right.$]
$h=$ height [m]

Rate of Flow:

$$
R=A_{1} v_{1}=A_{2} v_{2} \quad \begin{array}{ll}
R & =\text { rate of flow }\left[\mathrm{m}^{3} / \mathrm{s}\right] \\
A & =\text { crossectional area }\left[\mathrm{m}^{2}\right] \\
v & =\text { velocity }[\mathrm{m} / \mathrm{s}]
\end{array}
$$

Bernoulli's Equation:

$$
P_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g y_{1}=P_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g y_{2}
$$

$P_{1}=$ pressure [Pa or $\mathrm{N} / \mathrm{m}^{2}$] $\quad \rho=$ density $\left[\mathrm{kg} / \mathrm{m}^{3}\right.$]
$v=$ velocity $[\mathrm{m} / \mathrm{s}] \quad g=$ gravity $\left[\mathrm{m} / \mathrm{s}^{2}\right]$
$y=$ height $[m]$
For a horizontal pipe: $\quad P_{1}+\frac{1}{2} \rho v_{1}{ }^{2}=P_{2}+\frac{1}{2} \rho v_{2}{ }^{2}$

Oscillation:

The Position Function for oscillating motion:
$\omega=\frac{2 \pi}{T}=2 \pi f$
$x=$ position [m]
$x_{m}=$ amplitude [m]
ω = angular frequency [rad/s]
$\omega=\sqrt{\frac{k}{m}}$ (spring)
$T=\frac{1}{f}$
$T=2 \pi \sqrt{\frac{m}{k}}$ (spring)
$T=2 \pi \sqrt{\frac{I}{m g h}}$
$F=m a=-\left(m \omega^{2}\right) x$
$t=$ time [s]
$\phi=$ phase angle [rad]
$(\omega t+\phi)=$ phase of the motion
[rad]
$k=$ spring constant [N / m]
$T=$ period [s]
$f=$ frequency $[\mathrm{Hz}]$
$F=$ force [N]
$m=$ mass [kg]
$I=$ moment of inertia $\left[\mathrm{kg} \cdot \mathrm{m}^{2}\right]$
$h=$ distance between axis and center of mass [m]
$U(t)=\frac{1}{2} k x_{m}{ }^{2} \cos ^{2}(\omega t+\phi) \quad$ Potential Energy
$K(t)=\frac{1}{2} k x_{m}{ }^{2} \sin ^{2}(\omega t+\phi) \quad$ Kinetic Energy
$E=U+K=\frac{1}{2} k x_{m}{ }^{2} \quad$ Total Mechanical Energy
$x^{\prime}=$ velocity of the oscillating object [m / s]
$x^{\prime \prime}=$ acceleration of the oscillating object $\mathrm{m} / \mathrm{s}^{2}$]

$$
\frac{d}{d x}(\cos u)=-u^{\prime} \sin u \quad \frac{d}{d x}(\sin u)=u^{\prime} \cos u
$$

Equations of a Line:

$$
\begin{array}{cl}
\begin{array}{l}
y=m x+b \\
A x+B y+C=0 \quad(m=-A / B)
\end{array} & \begin{array}{l}
\text { slope-intercept } \\
\text { first degree }
\end{array} \\
y-y_{1}=m\left(x-x_{1}\right) & \text { point-slope } \\
A x+B y=A x_{1}+B y_{1} & \text { point-slope, alt. } \\
y-y_{1}=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)\left(x-x_{1}\right) & \text { 2-point } \\
\frac{x}{a}+\frac{y}{b}=1 \quad(m=-b / a) & \begin{aligned}
\text { intercept } \\
a=x \text {-intercept } \\
b=y \text {-intercept }
\end{aligned}
\end{array}
$$

