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SOME BASICS 

COULOMB 
A unit of electrical charge equal to one amp second, 
the charge on 6.21×1018 electrons, or one joule per 
volt.  

 

UNITS, electromagnetics 

2

2

2

 electric field  [V/m]              
 magnetic field  [A/m]            

fields
 electric flux density  [C/m ]  

 magnetic flux density  [Wb/m ]

 electric current density  [A/m ]
 electric








ρ v

E
H
D

B

J

v
v
v

v
v

3
sources

 charge density  [C/m ]





 

These vectors are a function of space and time ( ),r tv
. 

 

UNITS, electrical 

I (current in amps) = · ·
· ·

q W J N m V C
s V V s V s s

= = = =  

q (charge in coulombs) = · ·
· ·

J N m W s
I s V C

V V V
= = = =  

C (capacitance in farads) = 
2 2

2

·
·

q q q J I s
V J N m V V

= = = =  

H (inductance in henrys) = ·V s
I

   (note that 2H·F s= ) 

J (energy in joules) = 
2

2· · · · · ·
q

N m V q W s I V s C V
C

= = = = =  

N (force in newtons) = 
2

· · ·J q V W s kg m
m m m s

= = =  

T (magnetic flux density in teslas) = 
2 2 2

· ·Wb V s H I
m m m

= =  

V (electric potential in volts) = 
· ·

·
W J J W s N m q
I q I s q q C

= = = = =  

W (power in watts) = 
2· · · 1

·
746

J N m q V C V
V I HP

s s s s
= = = = =  

Wb (magnetic flux in webers) = · ·
J

H I V s
I

= =  

where s is seconds 
 

λ   WAVELENGTH   [m] 
The distance that a wave travels during one cycle. 

2pv

f k
π

λ = =  

For complex k, 
( jk k k′ ′′= − ): 

2
k
π

λ =
′

 

vp = velocity of propagation (speed of 
light 2.998×108 m/s in free space) 

f = frequency [Hz] 

k = 2π
ω µε =

λ
, the wave number or 

propagation constant [m-1] 

The relation at right can be used to 
quickly approximate radio frequency 
wavelengths.  For example, at 300 MHz it 
is easily seen that the wavelength is 1m. 

( )
300
MHzf

λ =  

 

CONSTANTS 
Avogadro’s number  

 [molecules/mole] 231002.6 ×=AN  

Boltzmann’s constant 231038.1 −×=k  J/K 

     51062.8 −×=  eV/K 

Elementary charge 191060.1 −×=q  C 

Electron mass 31
0 1011.9 −×=m  kg 

Permittivity of free space 12
0 1085.8 −×=ε  F/m 

Permeability constant 7
0 104 −×π=µ  H/m 

Planck’s constant 341063.6 −×=h  J-s 

   151014.4 −×=  cV-s 

Rydberg constant 678,109=R  cm-1 

kT @ room temperature 0259.0=kT  eV 

Speed of light 810998.2 ×=c  m/s 

1 Å (angstrom) 10-8 cm = 10-10 m 

1 µm (micron) 10-4 cm 
1 nm = 10Å = 10-7 cm 
1 eV = 1.6 × 10-19 J 
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ELECTROMAGNETIC SPECTRUM 

FREQUENCY WAVELENGTH 
(free space) 

DESIGNATION APPLICATIONS 

< 3 Hz > 100 Mm  Geophysical prospecting 

3-30 Hz 10-100 Mm ELF Detection of buried metals 

30-300 Hz 1-10 Mm SLF Power transmission, submarine communications 

0.3-3 kHz 0.1-1 Mm ULF Telephone, audio 

3-30 kHz 10-100 km VLF Navigation, positioning, naval communications 

30-300 kHz 1-10 km LF Navigation, radio beacons 

0.3-3 MHz 0.1-1 km MF AM broadcasting 

3-30 MHz 10-100 m HF Short wave, citizens' band 

30-300 MHz 
54-72 
76-88 
88-108 
174-216 

1-10 m VHF TV, FM, police 
TV channels 2-4 
TV channels 5-6 
FM radio 
TV channels 7-13 

0.3-3 GHz 
470-890 MHz 
915 MHz 
800-2500 MHz 
1-2 
2.45 
2-4 

10-100 cm UHF 
 
 
"money band" 

 

Radar, TV, GPS, cellular phone 
TV channels 14-83 
Microwave ovens (Europe) 
PCS cellular phones, analog at 900 MHz, GSM/CDMA at 1900 
L-band, GPS system 
Microwave ovens (U.S.) 
S-band 

3-30 GHz 
4-8 
8-12 
12-18 
18-27 

1-10 cm SHF Radar, satellite communications 
C-band 
X-band  (Police radar at 11 GHz) 
Ku-band  (dBS Primestar at 14 GHz) 
K-band  (Police radar at 22 GHz) 

30-300 GHz 
27-40 
40-60 
60-80 
80-100 

0.1-1 cm EHF Radar, remote sensing 
Ka-band  (Police radar at 35 GHz) 
U-band 
V-band 
W-band 

0.3-1 THz 0.3-1 mm Millimeter Astromony, meteorology 

1012-1014 Hz 3-300 µm Infrared Heating, night vision, optical communications 

3.95×1014-
7.7×1014 Hz 
 

390-760 nm 
625-760 
600-625 
577-600 
492-577 
455-492 
390-455 

Visible light Vision, astronomy, optical communications 
Red 
Orange 
Yellow 
Green 
Blue 
Violet 

1015-1018 Hz 0.3-300 nm Ultraviolet Sterilization 

1016-1021 Hz  X-rays Medical diagnosis 

1018-1022 Hz  γ-rays Cancer therapy, astrophysics 

> 1022 Hz  Cosmic rays Astrophysics 
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ELECTROMAGNETIC WAVES 

THE ELECTROMAGNETIC SPECTRUM 
The HF band is useful for longrange communications 
because these frequencies tend to bounce off the 
ionosphere (a atmospheric layer whose lower 
boundary is about 30 miles up) and the earth's 
surface.  Only three transmitters would be required for 
global coverage.  The effect varies with time of day 
due to the effects of sunlight on the ionosphere.  The 
ionosphere is transparent to the FM band. 

The attenuation effect of the atmosphere peaks at 
various frequencies, notably at 60 GHz due to oxygen.  
This frequency is used for intersatellite 
communications when it is desired that the signal not 
reach earth. 

The attenuation effect of the atmosphere is at a low 
point at 94 GHz, which is in the W-band, used for 
radar. 

The frequency of U.S. microwave ovens (2.45 GHz) is 
an ISM frequency (Industrial, Scientific, Medical). 

At the high frequencies, the electromagnetic spectrum 
becomes more particle-like and less wave-like. 
 

 

VISUALIZING THE ELECTROMAGNETIC 
WAVE 

The electric field E and the magnetic field H are at right 
angles to each other.  With the electric field aligned 
with the x-axis and the magnetic field on the y-axis, 
propagation is in the z-direction.  Propagation is the 
movement of the effect of the electromagnetic 
disturbance.  This is analogous to dropping a pebble in 
a pond.  The ripples propagate outward from the 
source of the disturbance but the water only moves in 
vertical oscillation. 

y

x
zE H

 
 

η   CHARACTERISTIC IMPEDANCE   [Ω] 
The characteristic or intrinsic wave impedance is the 
ratio of electric to magnetic field components, a 
characteristic of the medium.  η0 is the characteristic 
impedance of free space with a value of 377Ω. 

µ
η =

ε
 

µ = permeability [H/m] 
ε = permittivity [F/m] 
 

The characteristic impedance can be used to relate the 
electric and magnetic fields. 

( )ˆE k H= −η ×
v v

      ( )1 ˆH k E= ×
η

v v
 

Other relations: 
kωµ = η       kηωε =  

k̂  = a unit vector in the direction of propagation 
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k   PHASE CONSTANT   [m-1] 
The wave number or propagation constant or 
phase constant k (sometimes called β) depends on 
the source frequency and characteristics of the 
medium.  k = ω µε  is called the dispersion 

relationship. 

2
k

c
π ω

= ω µε = = = ωεη
λ

 

To obtain the complex phase constant, use the complex 
permittivity εnew, see page 12.   new jk k k′ ′′= ω µε = −   The 

real part k′  (always positive) governs the propagation and 
the imaginary part k′′  (always subtracted) governs the 
damping.  The exponential term of the wave equation looks 
like this: 

+z propagating: 
( )j jj jk k zkz k z k ze e e e′ ′′− − ′ ′′− − −= =  

-z propagating: 
( )j jj jk k zkz k z k ze e e e′ ′′+ − ′ ′′+ + += =  

Note that the exponent containing k′′  will always have the 
same sign as the exponent containing k′ , since wave 
decay must occur in the same direction as wave 
propagation.  It is important to remember that when reading 
the complex phase constant from a wave expression that 
the k′  and k′′  terms are themselves always positive and 
the + or – signs in the exponents are associated with z, 
determining the direction of propagation. 

Complex phase constant in the time domain: 

{ } ( ) {j j

damps
 propagation in 

direction

cosk z k z t k z

z z

e e e t k z e′ ′′ ′′− − ω −

+ +

′= ω −Re 1442443  

ω = angular frequency of the source [radians/s] 
ε0 = permittivity of free space 8.85 × 10-12 [F/m] 
µ0 = permeability of free space 4π×10-7 [H/m] 
λ = 2 c

k f
π

= , the wavelength [m] 

 

k
v

   WAVE VECTOR   [m-1] 
The phase constant k is converted to a vector.  The 
vector k

v
 is in the direction of propagation. 

ˆ ˆ ˆ ˆx y zk kk k x k y k z= = + +
v

 

k = 2π
ω µε =

λ
, the wave number or propagation constant 

[rad./m] 

 

PLANE WAVE 
A pebble dropped in a pond produces a circular wave.  
A plane wave presents a planar wavefront.  Function 
variables within a plane have uniform amplitude and 
phase values.  Plane waves do not exist in nature but 
the idea is useful as an approximation in some 
circumstances.  A radio wave at great distance from 
the transmitting antenna could be considered a plane 
wave.  So treating a wave as a plane wave is to ignore 
the source, hence they are also called "source-free" 
waves. 

wavefront

z

 

Linearly polarized electromagnetic wave equations: 

Electric field:   ( )0ˆ cosxE xE t kz= ω −
v

 

 j
0ˆ kz

xE xE e−=
v

 (phasor form) 

Magnetic field: ( )0ˆ cosy

E
H y t kz= ω −

η

v
 

 j0ˆ kz
y

E
H y e−=

η

v
 (phasor form) 

ω = angular frequency of the source [radians/s] 
E0 = peak amplitude [V/m] 
t = time [s] 

k = 2π
ω µε =

λ
, the wave number or propagation constant 

[rad./m] 
z = distance along the axis of propagation [m] 
η = /µ ε  intrinsic wave impedance, the ratio of electric to 

magnetic field components, a characteristic of the 
medium [Ω] 
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TRAVELING/PROPAGATING WAVE 
A wave traveling in the +z direction can be expressed 

jkze−  and a wave in the opposite direction would be 

expressed +jkze . 

z1

t1
z

to

λ

z

 

k = 2π
ω µε =

λ
, the wave number or propagation constant 

[m-1] 

λ = 
2 c
k f
π

= , the wavelength [m] 

 

THE COMPLEX WAVE EQUATION 
The complex wave equation is applicable when the 
excitation is sinusoidal and under steady state 
conditions. 

2
2

2

( )
( ) 0

d V z
k V z

dz
+ =  

where  
0 0

2
k

π
= ω µ ε =

λ
 is the phase constant and 

is often represented by the letter β. 

The complex wave equation above is a second-order 
ordinary differential equation commonly found in the 
analysis of physical systems.  The general solution is: 

j j( ) kz kzV z V e V e+ − − += +  

where  jkze−   and  jkze+   represent wave propagation 
in the +z and –z directions respectively. 

 

PHASOR NOTATION 
When the excitation is sinusoidal and under steady-
state conditions, we can convert between the time 
domain and the phasor domain. 

Where z(t) is a function in the time domain and Z is its 
equivalent in the phasor domain, we have 
z(t) = Re{Zejωt}. 

Time Domain Phasor Domain 
Z(t) Z 

cosA tω  A↔  

( )0cosA tω + φ  0jAe φ↔  

( )0cosxAe t−α ω + φ  0jxAe e φ−α↔  

sinA tω  jA↔ −  

( )0sinA tω + φ  0jjAe φ↔ −  

( )d
z t

dt
    j Z↔ ω  

( )z t dt∫  
1
j

Z↔
ω

 

Example, time domain to phasor domain: 

( ) ( ) ( )
( ){ }j j j j

ˆ ˆ, 2cos 4sin

ˆ ˆ2 j 4kz t kz t

r t t kz x t kz y

e e x e e yω ω

= ω + + ω +

= + −

E

Re

v v
 

( ) j jˆ ˆ2 j4kz kzE r e x e y= −
v v

 

 

TIME-AVERAGE 
When two functions are multiplied, they cannot be 
converted to the phasor domain and multiplied.  
Instead, we convert each function to the phasor 
domain and multiply one by the complex conjugate of 
the other and divide the result by two. 

For example, the function for power is: 

( ) ( ) ( )P t v t i t=  watts 

Time-averaged power is: 

( ) ( ) ( ) { }*

0

1 1
2

T
P t v t i t dt V I

T
= =∫ Re  watts 

T = period [s] 
V = voltage in the phasor domain [V] 
I* = complex conjugate of the phasor domain current [A] 
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STANDING WAVE RATIO 

ρ−
ρ+

===
1
1

SWR
min

max

min

max

I

I

V

V
 

 

MAXWELL'S EQUATIONS 
Maxwell's equations govern the principles of guiding 
and propagation of electromagnetic energy and 
provide the foundations of all electromagnetic 
phenomena and their applications.  The time-harmonic 
expressions can be used only when the wave is 
sinusoidal. 

 STANDARD FORM 
(Time Domain) 

TIME-HARMONIC 
(Frequency Domain) 

Faraday's 
Law t

∂
∇×

∂
B

E = -
vv

 jE B∇× ω= -
v v

 

Ampere's 
Law* t

∂
∇× +

∂
D

H = J
vv v  jH D J∇× ω +=

v v v
 

Gauss' 
Law v∇ ⋅ ρD =

v
 vD∇ ⋅ ρ=

v
 

no name 
law 0∇ ⋅ B =

v
 0B∇ ⋅ =

v
 

E = electric field [V/m] 
B = magnetic flux density [Wb/m2 or T]  B = µ0H 
t = time [s] 
D = electric flux density [C/m2]  D = ε0E 
ρ = volume charge density [C/m3] 
H = magnetic field intensity [A/m] 
J = current density [A/m2] 

*Maxwell added the 
t

∂
∂

D  term to Ampere's Law. 

 

MAXWELL'S EQUATIONS 
source-free or plane wave solution 

If we consider an electromagnetic wave at some 
distance from the source, it can be approximated as a 
plane wave, that is, having a planar wavefront rather 
than spherical shape.  In this approximation, the 
source components of Maxwell's equations can be 
ignored and the equations become: 

SOURCE-FREE 
(Time-dependent) 

t
∂

∇×
∂
B

E = -
vv

 

SOURCE-FREE 
(Time-harmonic) 

jE B∇× ω= -
v v

 

t
∂

∇×
∂

D
H =

vv
 j jH D E∇× ω = ωε=

v v v
 

0∇ ⋅ D =
v

 0D∇ ⋅ =
v

 

0∇ ⋅ B =
v

 0B∇ ⋅ =
v

 

 

FARADAY'S LAW 
When the magnetic flux enclosed by a loop of wire 
changes with time, a current is produced in the loop.  
The variation of the magnetic flux can result from a 
time-varying magnetic field, a coil in motion, or both.. 

t
∂

∇×
∂
B

E = -
vv

 
∇ × E

v
 = the curl of the electric field 

B = µ0H  magnetic flux density 
[Wb/m2 or T] 

 
Another way of expressing Faraday's law is that a 
changing magnetic field induces an electric field. 

· ·ind C S

d
V dl ds

dt
= = −∫ ∫E B

vv v vÑ  
where S is the 
surface enclosed 
by contour C. 
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GAUSS'S LAW 
The net flux passing through a surface enclosing a charge 
is equal to the charge.  Careful, what this first integral really 
means is the surface area multiplied by the perpendicular 
electric field.  There may not be any integration involved. 

0 · encS
d Qε =∫ sE

vÑ  · encS V
d dv Q= ρ =∫ ∫sE

vÑ  

ε0 = permittivity of free space 8.85 × 10-12 F/m 
E = electric field [V/m] 
D = electric flux density [C/m2] 
ds = a small increment of surface S 
ρ = volume charge density [C/m3] 
dv = a small increment of volume V 
Qenc = total electric charge enclosed by the Gaussian 

surface [S] 

The differential version of Gauss's law is: 

·∇ = ρD
v

 or ( )div ε = ρE
v

 

 

GAUSS'S LAW – an example problem 
Find the intensity of the electric field at distance r from a 
straight conductor having a voltage V. 

Consider a cylindrical surface of length l and radius r 
enclosing a portion of the conductor.  The electric field 
passes through the curved surface of the cylinder but not 
the ends.  Gauss's law says that the electric flux passing 
through this curved surface is equal to the charge enclosed. 

2

0 0 0
· r enc l lS
d E lr d Q l CVl

π
ε = ε φ = = ρ =∫ ∫sEÑ  

so VCdrE lr =φε ∫
π2

00   and 
r

VC
E l

r
02πε

=  

Er = electric field at distance r from the conductor [V/m] 
l = length [m] 
r dφ = a small increment of the cylindrical surface S [m2] 
ρl = charge density per unit length [C/m] 
Cl = capacitance per unit length [F/m] 
V = voltage on the line [V] 

 

CONSTITUTIVE RELATIONS 

( ) ( ), ,⇔D B E H
vv vv

 

The magnetic field intensity vector H
v
 is directly 

analogous to the electric flux density vector D
v

 in 
electrostatics in that both D

v
 and H

v
 are medium-

independent and are directly related to their sources. 

In free space:  ... 0= εD E
vv

     0= µB H
vv

 

D = electric flux density [C/m2] 
E = electric field [V/m] 
B = magnetic flux density [Wb/m2 or T] 
H = magnetic field intensity [A/m] 
ε0 = permittivity of free space 8.85 × 10-12 [F/m] 
µ0 = permeability of free space 4π×10-7 [H/m] 

Free space looks like a transmission line: 

0ε0 ε

1 m

0ε

0µ 0µ 0µ

 
 

CONSERVATIVE FIELD LAW 

0∇× =E
v

 · 0
S

d =∫ lEÑ  

E = vector electric field [V/m] 
dl = a small increment of length 

 

EQUATION OF CONTINUITY 
The differential form of the law of conservation of 
charge. 

·
t

∂ρ
∇ = −

∂
J
v  

In expanded phaser form: jyx z
JJ J

x y z

∂∂ ∂
+ + = − ωρ

∂ ∂ ∂
 

J = current density [A/m2] 
ρ = volume charge density [C/m3] 
t = time [s] 

 

COULOMB'S LAW 
·∇ = ρD

v
 ·

S V
d dv= ρ∫ ∫sD

vÑ  

D = electric flux density [C/m2] 
ρ = volume charge density [C/m3] 
ds = a small increment of surface S 
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POYNTING'S THEOREM 
Poynting's theorem is about power conservation and is 
derived from Maxwell's equations. 

( ) ( ) ( )
Total power flowing Total power dissipatedRate at which the storedinto the surface . in volume .energy in volume  is increasing.

m e eS V V

S VV

ds W W dv dv
t

∂
− × ⋅ = + + σ ⋅

∂∫ ∫ ∫E H E E
v v vv v

144424443 1442443144424443Ñ
Units are in watts. 

 

S
v

   POYNTING VECTOR   [W/m2] 
The Poynting vector is the power density at a point in 
space, i.e. the power flowing out of a tiny area ds.  
Units are in watts per meter squared.  I haven't found 
a good font to do cursives with yet; the Poynting vector 
is supposed to be a cursive capital S. 

Instantaneous Poynting vector: 

( ) { } ( ){ }j21 1
,

2 2
tz t E H E H e∗ − ω= × = × + ×S E H Re Re

vv v v v vv
 

Hint:  Convert to the time domain (sine and cosine), then 
perform E × H. 

Time-averaged Poynting vector: 

( ) ( ) { }
0

1 1
,

2

T
z t dt E H

T
∗× = ×∫S = E H Re

vv v vv
 

Hint:  Either integrate the instantaneous Poynting vector 
or use the simpler method involving the cross product 
E × H*.  Note that H* is just H with the signs reversed on 
all the js. 

T = 2 1
f

π
=

ω
 the period [s] 

E
v

 = the electric field vector in phasor notation [V/m] 
H ∗v

 = the complex conjugate of the magnetic field intensity 
in phasor notation [A/m] 

 

A
v

   VECTOR MAGNETIC POTENTIAL   
[Wb/m] 

The vector magnetic potential points in the direction of 
current. 

( )
0 0

1
j ·

j
= − ω ∇ ∇

ωµ ε
E A + A
v v v  ·∇ =A B

v v
 

( )
0

1
= ∇ ×

µ
H A
v v  

2
0

2 2
0 0 0

k

∇ ω µ ε = −µA + A J
v v v

123
 

In Cartesian coordinates: 

2 2
0 0

2 2
0 0

2 2
0 0

x x x

y y y

z z z

A k A J

A k A J

A k A J

∇ + = −µ

∇ + = −µ

∇ + = −µ

 

This statement says that current Jx produces only flux Ax, Jy 
produces Ay, etc. 

 

VECTOR HELMHOLTZ EQUATION 
2 2 0E k E∇ + =
v v

 

In the case of a uniform plane wave where E has only 
an x component and is only a function of z, the 
equation reduces to 

2
2

2 0x
x

d E
k E

dz
+ =  

Note that this is a second-order ordinary differential 
equation (the same form as the wave equation) and 
has the general solution 

( ) j j
1 2

kz kz
xE z C e C e− += +  

C1 and C1 can be determined from boundary 
conditions.  The real or instantaneous electric field can 
be found as 

( ) ( ){ }
( ) ( )

j j j
1 2

1 2

,

cos cos

kz kz t
x z t C e C e e

C t kz C t kz

− + ω= +

= ω − + ω +

E Re
 

E
v

 = the electric field vector in phasor notation [V/m] 

k = 2π
ω µε =

λ
, the wave number or propagation constant 

[m-1] 
ω = angular frequency of the source [radians/s] 
ε0 = permittivity of free space 8.85 × 10-12 [F/m] 
µ0 = permeability of free space 4π×10-7 [H/m] 

 

vp   VELOCITY OF PROPAGATION   [m/s] 
The velocity of propagation is the speed at which a 
wave moves through the medium.  The velocity 
approaches the speed of light but may not exceed the 
speed of light since this is the maximum speed at 
which information can be transmitted. 

1
pv

k
ω

= =
εµ

 

If the phase constant k is complex ( jk k k′ ′′= − ), then 
the relation holds using the real part of the phase 
constant k′ :  /pv k′= ω . 

ε = permittivity of the material [F/cm] 
µ = permeability of the material [H/cm] 
ω = frequency [radians/second] 

k = 2π
ω µε =

λ
 phase constant [m-1] 
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RADIAL WAVES 

SENSE, AXIAL RATIO, AND TILT ANGLE 
These three parameters determine whether an 
electromagnetic wave has linear, circular, or elliptical 
polarization, define which direction the wave rotates in 
time, and describe the elongation and angular 
orientation to the x-axis. 
Note that the polarization also depends on the angle of 
observation.  For example, moving off axis from a circularly 
polarized wave causes the polarization to become eliptical, 
and at 90° off axis, it is linearly polarized. 
sense:  The rotation of the wave in time as viewed from the 
receiving antenna.  RH or LH.  For linearly polarized waves, 
sense is irrelevant. 
axial ratio:  The length of the major axis divided by the 
length of the minor axis.  The value can range from 1 
(circularly polarized) to infinity (linearly polarized). 
tilt angle:  The tilting of the major axis with respect to the x-
axis.  For circular polarization the value is irrelevant. 

To determine the three parameters, first determine the 
direction of propagation, e.g. an e-jkz term indicates 
propagation in the +z direction due to the negative sign in 
the exponent.  Next, determine the values for EL and ER (two 
new terms defined for this purpose) and convert these 
complex values to polar notation. 

jj

2
Lx y

L L

E E
E E e+ θ−

= =     jj

2
Rx y

R R

E E
E E e+ θ+

= =  

The sense is LH if |EL| > |ER| and RH if |ER| > |EL|.  If 
|EL| = |ER|, then the polarization is linear.  NOTE: This 
assumes a wave propagating in the +z direction.  For a 
wave traveling in the –z direction, reverse the sense 
found by this method. 

The axial ratio is   axial ratio R L

R L

E E
E E

+
=

−
 

The tilt angle is   ( )1
2tilt angle R L= θ − θ  

Be careful to preserve the signs of the angles when 
finding the tilt. 

 

LINEAR POLARIZATION 

( ) jˆ ˆ kz
x yE xE yE e−= +

v
 

An linearly polarized wave is characterized by Ex and Ey 
in phase, a finite tilt angle, and an axial ratio of infinity.  

θ

major axis

y

tilt angle  

x

 
 

CIRCULAR POLARIZATION 
A wave is circularly polarized when 1) Ex and Ey are 
equal in magnitude and 2) they are 90° out of phase 
as in the example above.  In the case of the equation 
below, propagation is in the +z direction (out of the 
page) due to e being raised to a negative power.   

Example:  ( ) jˆ ˆ2 j 2 kzE x y e−= −
v

 

propagation
out of page

y

rotation  

x

 

( ) ˆ ˆ0 cos sinx yE z xE t yE t= = ω − ω
v

 

For the case where z=0, at t=0 the electric field vector 
points along the +x axis.  At ωt = π/2, the vector points in the 
-y direction.  To determine sense, point the thumb in the 
direction of propagation (out of the page in this case) and 
verify that the fingers curl in the direction of vector rotation.  
Whichever hand this works with determines the sense—
right-hand or left-hand.  In this case it is the left hand.  This 
method of determining sense is an alternative to the 
previously mentioned method using the ER and EL values. 

 

ELLIPTICAL POLARIZATION 

( ) jˆ ˆ kz
x yE xE yE e−= +

v
 

An elliptically polarized wave is characterized by a 
finite axial ratio greater than one.  

major axis

minor axis

y

tilt angle  

θ
x
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LOSSLESS MATERIALS 
Characteristics of plane waves in common lossless 
materials: 

Because ( ) ( )0 0, ,µ ε > µ ε , 

k = ω µε  gets larger 

1
pv

k
ω

= =
µε

 gets smaller 

2
k
π

λ =  gets smaller 

so the dimensions of an antenna would be smaller… 
 

LOSSY/DISSIPATIVE MATERIALS 
Lossy materials can carry some current so this 
introduces a new term, conductivity σ (sigma) in units 
of moes per meter [J /m].  This new term results in 
complex permittivity.  To calculate for lossy materials, 
simply substitute the new value for complex 
permittivity into the old equations. For example: 

newj jH E H E∇× ωε ⇒ ∇× ωε= =
v v v v

 

 

ε(ω)  PERMITTIVITY 
OF THE IONOSPHERE  [F/m] 

The permittivity of the earth’s ionosphere can be 
described by an unmagnetized cold plasma and is 
dependent on the frequency of the incident radio 
wave.  For the FM band, the permittivity of the 
ionosphere is about the same as that of free space so 
the signal passes through it.  For the AM band, the 
permittivity of the ionosphere is much different from 
free space (it’s actually a negative value) so the wave 
is reflected.  

2

0 2( ) 1 p ω
ε ω = ε − ω 

,   where 2

0
p

Nq
m

ω =
ε

 

ε0 = permittivity of free space 8.85 × 10-12 [F/m] 
ωp = plasma frequency? [radians/second] 
ω = radio frequency [radians/second] 
N = electron density, e.g. 1012 [m-3] 
q = the electron charge, 1.6022×10-19 [C] 
m = electron mass 9.1094×10-31 [kg] 

 

εnew  COMPLEX PERMITTIVITY  [F/m] 
Complex permittivity is a characteristic of lossy 
materials.  The imaginary part of εnew accounts for 
heat loss in the medium due to damping of the 
vibrating dipole moments.  

new 1 j j
σ  ′ ′′ε = ε − = ε − ε ωε 

, 

ε = permittivity [F/m] 
σ = (sigma) conductivity [J /m or Siemens/meter] 

′ε  = the real part of complex permittivity [F/m] 
′′ε  = the imaginary part of complex permittivity [F/m] 

 

tan θ   LOSS TANGENT 
The loss tangent, a value between 0 and 1, is the ratio 
of conduction current to the displacement current in a 
lossy medium, or the loss coefficient of a wave after it 
has traveled one wavelength.  This is the way data is 
usually presented in texts. 

tan
σ

θ =
ωε

 

Graphical representation of 
loss tangent: 

For a dielectric, tan 1θ = . 

( )1
tan tan

2
π

α ≈ θ β = θ
λ

 

θ

(  )IImag.

ωε

σ
(  )IRe 

 
ωε  is proportional to the amount of current going through 
the capacitance C. 
σ  is proportional to the amount current going through the 
conductance G. 
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δ   SKIN DEPTH   [m] 
The skin depth or penetration depth is the distance 
into a material at which a wave is attenuated by 1/e 
(about 36.8%) of its original intensity. 

1
k

δ =
′′

    where 0 newjk k k′ ′′= − = ω µ ε  

 and new 1 j
σ ε = ε − ωε 

 

k = 2π
ω µε =

λ
 phase constant [m-1] 

ω = frequency [radians/second] 
µ0 = permeability of free space 4π×10-7 [H/m] 
ε = permittivity [F/m] 
σ = (sigma) conductivity [J /m or Siemens/meter] 

Skin Depths 
 60 Hz 1 MHz 1 GHz 

silver 
copper 
gold 
aluminum 
iron 

8.27 mm 
8.53 mm 

10.14 mm 
10.92 mm 
0.65 mm 

0.064 mm 
0.066 mm 
0.079 mm 
0.084 mm 
0.005 mm 

0.0020 mm 
0.0021 mm 
0.0025 mm 
0.0027 mm 
0.00016 mm 

 

Wm   MAGNETIC ENERGY 
Energy stored in a magnetic field [Joules]. 

2

0

1
'

2m V
W dv=

µ ∫ B

 

Wm = energy stored in a magnetic 
field [J] 

µ0 = permeability constant 
4π×10-7 [H/m] 

B = magnetic flux density 
[Wb/m2 or T] 

 
 

REFLECTION AND TRANSMISSION 

kxi, etc.   WAVE VECTOR COMPONENTS 

kxi

kxr

zt

rk y

ki

kzi

iθ

kzr

x
k

t

z

k xtk

 

1 1ik = ω µ ε  1 1 sinxi ik = ω µ ε θ  

2 2tk = ω µ ε  1 1 coszi ik = ω µ ε θ  

µ1 = permeability of the medium of the incident wave [H/m] 
µ2 = permeability of the medium of the transmitted wave 

[H/m] 
ε1 = permittivity of the medium of the incident wave [F/m] 
ε2 = permittivity of the medium of the transmitted wave [F/m] 

 

k
v

  WAVE VECTOR IN 2 DIMENSIONS  
[m-1] 

The vector k
v

 is in the direction of propagation. 

ˆ ˆˆ ˆsin cos x zk k x k z k x k z= θ + θ = +
v

 

Dispersion Relationship: 2 2 2
x zk k+ = ω µε  

 

k0  PHASE CONSTANT IN FREE SPACE  
[m-1] 

0 0 0k = ω µ ε  
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y⊥, y||  PARAMETER OF DISCONTINUITY 

The  parameter is used in finding the reflection and 
transmission coefficients.  

1

2

zt

zi

k
y

k⊥
µ

=
µ

  1

2

zt

zi

k
y

k
ε

=
εP  , where 

2 2 2
2 2xt ztk k+ = ω µ ε   and  xt xik k=  

µ1 = permeability of the medium of the incident wave [H/m] 
µ2 = permeability of the medium of the transmitted wave 

[H/m] 
ε1 = permittivity of the medium of the incident wave [F/m] 
ε2 = permittivity of the medium of the transmitted wave [F/m] 
kzt =  z-component of the phase constant of the transmitted 

wave [m-1] 
kzi =  z-component of the phase constant of the incident 

wave [m-1] 

 

τ⊥, τ||  TRANSMISSION COEFFICIENT 

The  coefficient used in determining the amplitude of 
the transmitted wave.  

2
1 y⊥

⊥

τ =
+

  
2

1 y
τ =

+P
P

 

y⊥ =  parameter of discontinuity for perpendicular polarized 
waves 

y|| =  parameter of discontinuity for parallel polarized waves 

The reflection and transmission coefficients are related. 

1 ⊥ ⊥+ Γ = τ  

 

Γ⊥, Γ||  REFLECTION COEFFICIENT 

This value, when multiplied by the incident wave Ey 
and reversing the sign of the wave component 
perpendicular to the plane of discontinuity, yields the 
reflected wave.  For the reflection coefficient of a 
transmission line, see p17.  

1
1

y
y

⊥
⊥

⊥

−
Γ =

+
  

1
1

y
y

−
Γ =

+
P

P
P

 

y⊥ =  parameter of discontinuity for perpendicular polarized 
waves 

y|| =  parameter of discontinuity for parallel polarized waves 

 

θc  CRITICAL ANGLE 
The minimum angle of incidence for which there is 
total reflection.  A critical angle exists for waves in a 
dense material encountering a less dense material, 
i.e. ε2 < ε1.  Applies to both perpendicular and parallel 
polarization. 

1 2 2

1 1

sinc
− µ ε

θ =
µ ε

 y

         Incident 
       waves
    approaching
  from this region
are totally reflected.

i

θc

k

z

x
medium 1

εµ 11 εµ2 2
medium 2

 
 

BOUNDARY CONDITIONS 
The tangential components of the electromagnetic 
wave are equal across the boundary (discontinuity) in 
materials with finite σ (most materials—perfect 
conductors are the exception).  Remember that the 
term boundary means that we're talking about the 
case where z = 0.  The tangential components are the 
x and y components, so the boundary conditions are: 

⊥ Polarization: i r t
y y yE E E+ =  and i r t

x x xH H H+ =  

|| Polarization: i r t
x x xE E E+ =  and i r t

y y yH H H+ =  

The only difference for a perfect conductor is that the sum 
of the incident and reflected magnetic components is not 
equal to the transmitted component (zero) but to the surface 
current density JS in units of A/m. 

⊥ Pol.: i r
x x SH H J+ =  and   || Pol.: i r

y y SH H J+ =   

The general expressions for boundary conditions are  

( )1 2ˆ 0n E E× − =
v v

  and  ( )1 2ˆ Sn H H J× − =
v v v

 

where n̂  is a unit vector normal to the plane of 
discontinuity ( ˆ ˆn z= −  in the examples here).  This also 
gives us the direction of current JS.  These two equations 
apply in all situations with the understanding that JS = 0 for 
all materials except perfect conductors and that E2 = H2 = 0 
for perfect conductors (due to total reflection). 
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SNELL'S LAW 
Relates the angles of incidence and transmission to 
the properties of the materials.  Don't use Snell's law 
with lossy materials. 

sin sini i t tk kθ = θ   or  sin sini i i t t tµ ε θ = µ ε θ  

ki =  phase constant of the incident wave [m-1] 
kt = phase constant of the transmitted wave [m-1] 
θi = angle of incidence [°] 
θt = angle of reflection [°] 

 

⊥  PERPENDICULAR POLARIZATION 

PERPENDICULAR POLARIZATION 
Wave Reflection/Transmission 

iE
v

 is perpendicular to the plane of incidence (the xz 
plane)  with components Ey and Hx, propagating in the 

ik
v

 direction.  The wave encounters a discontinuity at 

the xy plane with a reflection in the rk
v

 direction and a 
transmitted wave in the 

tk
v

 direction.  If the wave is 

entering a denser medium (εr2 > εr1) then the 
transmitted wave will bend toward the z-axis. 

E

H

yθ

i

ki

θi
i

i

medium 1

kr

1εµ1
x

θ
z

t

k

medium 2
2µ ε2

t

 
µi = permeability of the medium of the incident wave [H/m] 
µt = permeability of the medium of the transmitted wave 

[H/m] 
εi = permittivity of the medium of the incident wave [F/m] 
εt = permittivity of the medium of the transmitted wave [F/m] 
θi = angle of incidence [°] 
θt = angle of reflection [°] 

, ,i r tk k k
v v v

 = wave vectors for the incident, reflected, and 

transmitted plane waves [rad./m] 

 

PERPENDICULAR POLARIZATION 
EQUATIONS 

for incident, reflected, and transmitted waves 

The form of the expressions for the electrical and 
magnetic components of the perpendicularly polarized 
wave encountering a discontinuity.  Note the 
placement of the kzi and kxi terms in the expression for 
the magnetic field due to it's perpendicular orientation 
to the electric field.  

Incident: 
j j

0ˆ xi zik x k ziE yE e e− −=
v

 

 ( ) j j0 ˆ ˆ xi zik x k zi
zi xi

i

E
H x k z k e e− −= − +

ωµ

v
 

Reflected: 
j j

0ˆ xr zrk x k zrE yE e e− +
⊥= Γ

v
 

 ( ) j j0 ˆ ˆ xr zrk x k zr
zr xr

i

E
H x k z k e e− +⊥Γ

= + +
ωµ

v
 

Transmitted: 
j j

0ˆ xt ztk x k ztE yE e e− −
⊥= τ

v
 

 ( ) j j0 ˆ ˆ xt ztk x k zt
zt xt

t

E
H x k z k e e− −⊥τ

= − +
ωµ

v
 

where: 
The x-components of the phase constant are equal for the 
incident, reflected, and transmitted waves.  This is called 
the phase matching condition and is determined by the 
boundary conditions.  

xi xr xtk k k= =   phase matching condition 

Other relations:  zi zrk k=  and 
2 2 2
xt zt t tk k+ = ω µ ε  

Also see Characteristic Impedance (p5) and Wave Vector 
Components (p13) for help with these problems. 

 

||  PARALLEL POLARIZATION 

PARALLEL POLARIZATION 

iE
v

 is parallel to the plane of incidence (the xz plane).   

= 0

yθ

k
iH

E i

i

z

iθ
i

medium 1

rk

µ1 1ε x

θt
z

tk

µ
medium 2

ε2 2
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PARALLEL POLARIZATION EQUATIONS 
for incident, reflected, and transmitted waves 
The form of the expressions for the electrical and 
magnetic components of the parallel polarized wave 
encountering a discontinuity.  

Incident: ( ) j j
0

1

1 ˆ ˆ xi zik x k zi
zi xiE k x k z H e e− −= −

ωε

v
 

 
j j

0ˆ xi zik x k ziH yH e e− −=
v

 

Reflected: ( ) j j
0

1

1 ˆ ˆ xr zrk x k zr
zr xrE k x k z H e e− += − − Γ

ωε P
v

 

 
j j

0ˆ xr zrk x k zrH yH e e− += ΓP
v

 

Transmitted: ( ) j j
0

2

1 ˆ ˆ xt ztk x k zt
zt xtE k x k z H e e− −= − τ

ωε P
v

 

 
j j

0ˆ xt ztk x k ztH yH e e− −= τP
v

 

where: 
The x-components of the phase constant are equal for the 
incident, reflected, and transmitted waves.  This is called 
the phase matching condition and is determined by the 
boundary conditions.  

xi xr xtk k k= =   phase matching condition 

Other relations:  zi zrk k=  and 
2 2 2
xt zt t tk k+ = ω µ ε  

Also see Characteristic Impedance (p5) and Wave Vector 
Components (p13) for help with these problems. 

 

θB  BREWSTER ANGLE 
Named for Scottish physicist, Sir David Brewster, who 
first proposed it in 1811.  For electromagnetic waves, 
the Brewster angle applies only to parallel 
polarization. It is the angle of incidence at which there 
is total transmission of the incident wave, i.e. Γ|| = 0.   

For light waves it is the angle of incidence that results in an 
angle of 90° between the transmitted and reflected waves.  
Also called the polarizing angle, this results in the reflected 
wave being polarized, with vibrations perpendicular to the 
plane of incidence (in other words, perpendicular to the 
page). 

In acoustic applications such as lithotripsy, θB is called the 
angle of intromission, used for blasting kidney stones.  

2 2

1 1

tan t
B

i

k
k

µ ε
θ = =

µ ε
 

y

90°

θ

k

B

i

medium 1

θB

x

z

k

tθ

t

medium 2

 
 

σ  LOSSY MEDIUM 
When a lossy medium is involved, use the same 
equations but replace ε with εnew.  The imaginary part of 
εnew accounts for heat loss in the medium due to damping of 
the vibrating dipole moments.  Don't use Snell's law with 
lossy mediums. 
kzt must have the form kzt'-jkzt'', positive real and 
negative imaginary, i.e. change it if you have to.  The 
solution will contain the term 

j jxi zt ztk x k z k ze e e′ ′′− − −  

Medium 1 

1 1µ ε  
Medium 2 

{
new

2 2 2

1 j

ε =
σ ε − ωε 

µ ε σ  
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σ→∞   PERFECT CONDUCTOR 
Everything gets reflected.  Since we don't know the 
surface current density Js, only one boundary condition 
is useful.  This is sufficient since we know the 
transmitted waves are zero.  Remember that the term 
boundary means z = 0.  
The tangential components of the incident and reflected 
electric fields are out of phase at the boundary so that they 
cancel. 
The tangential components of the incident and reflected 
magnetic fields are in phase at the boundary creating a 
strong magnetic field that produces surface current Js [A/m]. 

Boundary Conditions: 
1

1

ˆ

ˆ 0
Sn H J

n E

× =

× =

v v
v  

where ˆ ˆn z= −  

⊥ Polarized: 0i r
y yE E+ =  1⊥Γ = −  

 
j j

0 0 0xi xik x k xE e E e− −
⊥+ Γ =  

π6 π4
zik kzi

E2 i

0π2 π
kzi kzi

z

z

E0

 

The z component of the incident and reflected electric fields 
of the ⊥ polarized wave produce a standing wave with 
constructive peaks spaced at 2π/kzi apart, beginning π/kzi 
from the conductor surface. 

|| Polarized: 0i r
x xE E+ =  1Γ = +P  

 j j
0 0

1 1

1 1
0xi xik x k x

zi zik H e k H e− −− Γ =
ωε ωε P  

x

y
z

ki

rk

 

0t tE H= =
v v

 
· j 0S SJ∇ + ωρ =
v

 

( )0ˆS zJ n H == ×
v v

 

where ˆ ˆn z= −  in this example, 
and JS is the surface current 
[A/m].  Surface current is 
present only in a perfect 
conductor (see Boundary 
Conditions p14).  Surface 
means z = 0. 

 

ANTENNAS 

Γ   REFLECTION COEFFICIENT   [unitless] 

This is the reflection coefficient for the transmission 
line.  For reflected waves in space, see p14.  

j 0

0

L

L

Z Z
e

Z Z
θ −

Γ = ρ =
+

  and 0

1
1LZ Z

+ Γ
=

− Γ
 

ρ = magnitude of the reflection coefficient  [no units] 
θ = phase angle of the reflection coefficient  [no units] 
ZL = load (antenna) impedance  [Ω] 
Z0 = transmission line (characteristic) impedance  [Ω] 

 

SWR   STANDING WAVE RATIO   [V/V] 

Also called the voltage standing wave ratio or VSWR. 

1
SWR

1
+ ρ

=
− ρ

 

ρ = magnitude of the reflection coefficient  [no units] 

 

RADIATION PATTERN 

The radiation pattern of an antenna is the relative 
strength of the absolute value of the electric field as a 
function of θ and φ.  The radiation pattern is the same 
for receiving antennas as for transmitting antennas. 

Radiation Pattern:  ( ),θ φE
r

 

The example on the left below is the radiation pattern for a 
single dipole oriented along the verticle axis.  The pattern 
on the right is for a 2-dipole array with the elements lying in 
the horizontal plane, one to the left and one to the right of 
center, with their lengths extending into the page. 

Radiation pattern |E(θ)| for a 
single dipole 

 

Radiation pattern |E(90,φ)| for 
2-element dipole with d=λ/2 

 
 



Tom Penick    tom@tomzap.com    www.teicontrols.com/notes    AntennasAndWirelessPropagation.pdf   1/30/2003   Page 18 of 31 

POWER 

Time-Averaged Poynting Vector  [W/m2] 

{ }*ff ff1
2= ×S Re E H

vv v
 

Total Time-Averaged Radiated Power  [W] 

( )2
rad ˆ· · sin

S S
P ds r r d d= = θ θ φ∫ ∫S S

rv v Ñ  

 

dBm   DECIBELS RELATIVE TO 1 mW 
The decibel expression for power.  The logarithmic 
nature of decibel units translates the multiplication and 
division associated with gains and losses into addition 
and subtraction.   

 0 dBm = 1 mW 
 20 dBm = 100 mW 
 -20 dBm = 0.01 mW 

( ) ( )dBm 10log mWP P=     

( ) ( )dBm /10mW 10PP =  

 

GAIN 

Gain Directivity Efficiency= ×  

 

EFFICIENCY 

Power radiated
Efficiency

Power Power dissipated 
radiated in conductor

=
+

 

 

(DIR)   DIRECTIVITY   [no units/dB] 

The directivity is the gain in the direction of maximum 
radiation compared to an omnidirectional spherical 
wave. 

( )
max

2
rad

Directivity
/ 4P r

=
π

S
v

  [no units] 

where { }
2ff

*ff ff1
2

02
= × =

η

E
S Re E H

vvv v
 

and ( )2
rad ˆ· sin

S
P r r d d= θ θ φ∫ S

rÑ  

Directivity is often expressed in dB:   

( ) ( )dBDIR 10log DIR=  

Directivity of Antenna Types 
Type Directivity dB 

Isotropic 
Infinitesimal dipole 
Half-wave dipole 
Wire-type 
Horn 
Reflector 

1.0 
1.5 
1.64 

~10 
~100 

 103-109 

 0 
1.76 
2.15 

~10 
~20 

 30-90 
 

FAR FIELD APPROXIMATION 

In general, we are only interested in the electric and 
magnetic fields distant from the antenna.  This allows 
us to simplify the calculations by dropping the near 
field components.  As a rule of thumb, the far field 
region is defined as: 

22D
r >

λ
 

where D is the diameter or size of the antenna 

 

ISOTROPIC ANTENNA 

An isotropic antenna is a theoretical antenna that 
radiates equally in all directions.  On any given 
"spherical shell" in the far field, Eff and Hff are in phase 
and are equal in magnitude. 

rad
24

P
r

=
π

S  ( )DIR 1=  

 
 
 
 
 
 
 
 
 
 



Tom Penick    tom@tomzap.com    www.teicontrols.com/notes    AntennasAndWirelessPropagation.pdf   1/30/2003   Page 19 of 31 

INFINITESIMAL DIPOLE AT ORIGIN 

A theoretical model of a very short dipole antenna, the 
most basic of antennas.  A points in the direction of 
current, in this case z.  Oscillation occurs along the z-
axis.   
 
Vector magnetic potential 
and magnetic field at a point 
in space due to an 
infinitesimal dipole antenna at 
the origin. 
 

( )
0j

0ˆ
4

k re
z I z

r

−

= µ ∆
π

A
v

 
x

∆z

z
Dipole

y

r
θ

Point

 

( ) ( )
0j

0

1 ˆ
4

k re
I z z

r

− 
= ∇× = ∆ ∇× µ π 

H A
v v

 

In the far field, only the slowest-decaying components are 
significant.   

( )

( )

0

0

j
ff

0

j
ff

0 0

ˆ j sin
4

ˆ j sin
4

k r

k r

e
k I z

r
e

k I z
r

−

−

= φ ∆ θ
π

= θ η ∆ θ
π

H

E

v

v  

The radiation pattern of the infinitesimal dipole is non-
isotropic.  The directivity is 1.5, or 1.76 dBi. 

z y

x x

 

Time-Averaged Poynting Vector  [W/m2] 

{ } ( )
( )

2 2
* 2ff ff 0 01

2 2

sinˆ
2 4

k
r I z

r

η θ
= × = ∆

π
S Re E H

vv v
 

Total Time-Averaged Radiated Power  [W] 

( )22
0 0

rad ·
12S

k I z
P ds

η ∆
= =

π∫ S
v v

 

Directivity:  ( )DIR 1.5=  

A = vector magnetic potential  [Wb/m] 
H = magnetic field intensity [A/m] 
r = radial distance from the origin  [m] 

 

INFINITESIMAL DIPOLE ON Z-AXIS 

The infinitesimal dipole at the origin is shifted to 
another point on the z-axis.  

r
θ

r'
Point

θ

z

y

1

x

z'

Dipole

∆z

 

θ

r'

rz'

z' cos θ

 
In the far field, we can make these approximations. 

1 1 1
ˆ ˆcosr r z′≈ − θ θ ≈ θ θ ≈ θ  

From the expression for electric field of the dipole at the 
origin, we get. 

( )
( )0j cos

ff
0 0

This term has
less effect here
than when it
appears in the
exponent above.

ˆ j sin
4 ( cos )

k r ze
k I z

r z

′− − θ

= θ η ∇ θ
′π − θ

E
v

14243
 

 

FINITE DIPOLE ON Z-AXIS 

The finite dipole on the z-
axis is calculated by 
summing the infinitesimal 
dipoles over a finite length.  

I(z') is a function describing 
the current along the dipole.  
For a ½ -wave dipole 
centered at the origin, this 
would be I(z') = I0 cos(z'k0). 

x

θ

y

r

z Point

-z

+h

-h

Finite
Dipole

 
From superposition 

( ) 0 0

ff ff ff

0

j +j cos

0 0

lim

ˆ j sin
4

h

hz

k r k z
h

h

d

I z dz e e
k

r

+

−∆ →

′− θ
+

−

= =

′ ′
= θ η θ

π

∑ ∫

∫

E E E
v v v

 

And finally the radiation due to an arbitrary line current I(z').  
We must understand this.   

( )
0

0

j
+j cosff

0 0
ˆ j sin

4

k r h k z

h

e
k I z e dz

r

− + ′ θ

−
′ ′= θ η θ

π ∫E
v

 

( )ff ff

0

1
r̂= ×

η
H E

vv
 

See the next section also. 
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J(θ)   SPACE FACTOR 

From the previous section, here is the far-field radiation due 
to an arbitrary line current: 

( )

( )

0
0

j
+j cosff

0 0

SPACE FACTORELEMENT PATTERN
the electric field due to
an infinitesimal dipole

ˆ j sin
4

k r h k z

h

e
k I z e dz

r

− + ′ θ

−
′ ′= θ η θ

π

θ

∫E
v

144424443144424443
J

 

The Space Factor depends on the length of the element 
and the current distribution within the element.  Note that 
the space factor resembles a Fourier transform of the 
current distribution, the only difference being the sign of the 
exponent.  Actually it is the Fourier transform since the sign 
is arbitrary as long as the opposite sign is used in the 
exponent of the compatible inverse Fourier transform.  
What this means is that an even distribution of current will 
result in a more directional radiation pattern and a tapered 
(Gaussian) current distribution will result in a broader 
radiation pattern with lower sidelobes.  See also Fourier 
Transform p30 and Fourier Transform Examples p30. 

 

HALF-WAVE DIPOLE 

The half-wave dipole or resonant dipole is the most 
commonly used antenna primarily because of its 
impedance, which is easily matched.   
To understand the half-wave dipole, first consider the 
current on a transmission line.  The current on one 
conductor is out of phase with current on the other so that 
radiation effects are canceled.  At ¼ -wavelength from the 
end, where the line will be bent to form the ½  -wave dipole, 
current is at a maximum.     

= 0I

~

Frequency
Source

0I= |I | λ
λ¼

 

As a result of bending, current is now in phase so that 
radiation takes place. 

Current in the dipole 

( ) ( )0 0cosI z I k z′ ′=  

Impedance:  zin = 73+j0 Ω 

Directivity:  1.64 or 2.15 dB 

λ½

 

( )0j
0 2ff

0 0 2
0

2 cos cosˆ j sin
4 sin

k r Ie
k

r k

− π θ
= θ η θ

π θ
E
v

 

Increasing the thickness of the elements has the effect of 
broadening the antenna bandwidth. 

 

LOG-PERIODIC ANTENNA 

The log-periodic dipole array (LPDA) consists of an 
array of half-wave dipoles of frequencies f, rf, r2f, . . ., 
rnf which, when plotted on a log scale appear equally 
spaced.  This produces a broadband antenna. 

-1

termination

short
circuit

+1ln ln

n+1D

l -1n

Dn

nD

α
α

 
 

LOG-PERIODIC FREQUENCIES 

The relationship between the bandwidth, the number 
of elements, and the scaling factor for a log-periodic 
antenna follows.  These are my own observations; 
textbook information is in the next box. 

1
log logu

l f

f
N

f s
=  

The crossover points between bands is then: 
0 1 2

1 1 1 1
, , ,

N

l l l l
f f f f

f f f f
s s s s

       
              
       

L  

The frequencies used to determine the length of each half-
wavelength element are the center frequencies of each of 
the N bands: 

0.5 1.5 2.5 0.5
1 1 1 1

, , ,
N

l l l l
f f f f

f f f f
s s s s

−
       
              
       

L  

fu = upper bandwidth cutoff frequency  [Hz] 
fl = lower bandwidth cutoff frequency  [Hz] 
N = number of antenna elements 
sf = scaling factor  [no units] 
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LOG-PERIODIC ANTENNA PROPERTIES 

Alignment angle  tan
2

n

n

l
D

α =  

Scaling factor  
1 1

n n
f

n n

l D
s

l D+ +

= = ,  a constant < 1 

Spacing parameter  
1

cot
2 4

fn n
p

n

sd d
S

l

−
= = = α

λ
, 

where 1n n nd D D+= − , varies with the element. 

and the optimum spacing parameter is 
4 25.76909996 10 0.0167208176 0.0602945516pS g g−= − × × + +  

where g is the gain in dB,  
and the optimum scaling factor is 

3.9866009 0.236230336f ps S= +  

Impedance  
2
0 1

1 0

8
8a f

Z Z
Z s

Z Z
= +  

where 

{
1

0

Element length
to diameter
ratio

276log 270
l

Z
d

 
= − 

 
 and 

Z0 is the characteristic impedance of the transmission 
line.  The antenna impedance is matched to the line by 
adjusting the length to diameter ratio. 

Design bandwidth ( )2
1.1 7.7 1 cots w fB B s = + − α  

 

where Bw is the desired bandwidth as the ratio of highest 
to lowest frequency.  The design bandwidth is greater 
than the desired bandwidth. 

Number of elements 
( )
ln

1
ln 1/

s

f

B
N

S

 
= + 

  
 

 

¼ -WAVE MONOPOLE 

A ¼ -wave monopole antenna is essentially half of a 
½  -wave dipole antenna.   
According to image theory, 
when the monopole is 
mounted perpendicular to a 
ground plane, it can be 
modeled as having a 
reflected current opposite the 
plane with flow in the same 
direction as current in the 
monopole. 

0
in

0

/ 2
36.5

V
Z

I
= = Ω  

Reflection

Ground
plane

Monopole

Signal

~

I0

 
 

APERTURE ANTENNAS 

APERTURE THEORY 

If a plane wave eminates from a source of finite 
dimensions, the propagating wave assumes spherical 
characteristics within its radiation pattern.  The 
beamwidth is inversely related to the size (in 
wavelengths) of the aperture, that is, a large aperture 
produces a more directional beam.  However, sidelobe 
level is independent of size; it depends on amplitude 
taper.  For a large aperture, the sine θ term in the 
element pattern disappears since the pattern becomes 
highly directional with θ ≈ 90°, sinθ ≈ 1. 

Plane
wave

Spherical
wave

Aperture

   

The far field radiation is proportional to the Fourier 
transform of the current distribution. 

Array Factor: 

Azimuth:  
( )sin

AF x
x

x

ka
ka

φ
=

φ
 

Elevation:  
( )sin

AF y
y

y

ka

ka

θ
=

θ
 

k = 2π/λ, phase constant of the carrier wave [m-1] 
2ax = width of aperture  [m] 
2ay = height of aperture  [m] 
φ = azimuth angle  [radians] 
θ = elevation angle  [radians] 

 

TOTAL FIELD for apertures and arrays 

The total radiated field is a product of the element 
pattern and the array factor. 

( ) ( )Element ArrayTotal Field pattern factor= ×    

The far field radiation is proportional to the Fourier 
transform of the current distribution. 
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CIRCULAR APERTURE ANTENNA 

The circular aperture antenna is parabolic in shape so 
that the wave emitted from the horn is reflected in 
phase as a plane wave.   

In phaseHornParabolic
reflector

 

For uniform amplitude across the beam: 

1 radian 60
Beamwidth

/ /D D
°

= ≈
λ λ

  VERY IMPORTANT 

( )
2

4 Area
Directivity

π
=

λ
 

For a tapered aperture (amplitude varies across the 
aperture: 

( )
2

4 Area
Directivity a

π
= η

λ
 

edge

center

Edge taper 20log
J

J
=  

ηa = aperature efficiency, a value less than or equal to 1 
D = aperature diameter  [m] 
J = current density [A/m2] 
λ = wavelength [meters] 

Sidelobe level is dependent on amplitude taper, not size: 

Sidelobe Levels 
Edge Taper 

[dB] Beamwidth [°] Sidelobe [dB] Aperture 
Efficiency 

-8 
-10 
-12 
-14 
-16 
-18 
-20 

65.3°/(D/λ) 
67.0°/(D/λ) 
68.8°/(D/λ) 
70.5°/(D/λ) 
72.2°/(D/λ) 
73.9°/(D/λ) 
75.6°/(D/λ) 

-24.7 
-27.0 
-29.5 
-31.7 
-33.5 
-34.5 
-34.7 

0.918 
0.877 
0.834 
0.792 
0.754 
0.719 
0.690 

 

ANTENNA ARRAYS 

When two or more antennas are used together, the 
combination is called an array.  A planar arrangement of 
closely spaced antenna elements essentially produces an 
aperture of equivalent area.   

 

AF   ARRAY FACTOR 

The Array Factor is the far-field radiation intensity of 
the elements of an array, assuming the elements to be 
isotropic radiators.  That is, it contains no information 
about the type of element used in the array.   

 

AF   ARRAY FACTOR 
for a linear series of elements 

d

 

( )
( ) 0

sin / 2
AF , sin sin

sin / 2
Nu

u k d
u

= = θ φ + ψ    

N = number of array elements  [no units] 
d = spacing between adjacent elements  [m] 
θ = angle of elevation.  This can be taken as 90° for the x-y 

plane  [radians] 
ψ = phase angle between adjacent elements (The direction 

of the antenna array can be electronically steered by 
driving the elements at different phases, i.e. 
progressively altering the phase of each element by the 
angle ψ with respect to the previous element.)  [radians] 

|AF| is periodic with period 2π.  There are N-2 sidelobes in 
the AF between 0 and 2π. 

Array Factors for N=2, 3, 5, & 10, plotted versus u 
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φ0   ARRAY STEERING   [radians] 

The direction of the main lobe of the antenna array can be 
electronically steered away from the perpendicular by an 
angle of φ by driving the elements at different phases, that 
is, progressively altering the phase of each element by the 
angle ψ with respect to the previous element.   

1
0

0

sin
k d

−  ψ
φ = − 

 
   

ψ = phase angle of the driving signal between adjacent 
elements  [radians] 

k0 =  phase constant in free space [m-1] 
d = the distance between adjacent elements  [m] 

 

GRATING LOBES 

Grating lobes are secondary lobes in the radiation 
pattern having the same magnitude as the main lobe.  
When the spacing between array elements becomes 
too large, grating lobes appear.  Grating lobes are a 
serious detriment to the directivity of an antenna 
system.  To prevent the occurance of grating lobes, 
the element spacing should be less than one 
wavelength. 
Below are radiation patterns of a 5-element dipole array with 
spacings d=0.8λ, d=0.9λ, and d=λ.  The main lobes are the 
thin vertical lobes and the grating lobes are the large 
horizontally opposed lobes. 

d = 0.8λ 

 

d = 0.9λ 

 

d = λ 

 
 

VISIBLE REGION 

The Array Factor is an unbounded function with a period of 
2π.  However, only a finite region of the function plays a part 
in the radiation pattern of the array.  This is called the 
visible region and is defined by:   

0 0k d u k d− + ψ ≤ ≤ + + ψ    

ψ = phase angle between adjacent  [radians] 
k0 =  phase constant in free space [m-1] 
d = the distance between adjacent elements  [m] 

 

GRAPHICAL METHOD 

The Radiation Pattern can be determined using the 
information covered in the preceeding three sections.  A 
polar plot is created below the plot of the array factor 
versus u.  The diameter of the polar plot of the array factor 
versus φ is fitted into the visible range.  Lines extending 
downward from the nodes to the perimeter of the polar plot 
and then to its center determine where the lobes are drawn.  
For the example below: 

N = 5, i.e. a 5-element array 
d = λ/2, elements are spaced λ/2 apart 
φ0 = 40°, the steering angle 
ψ = -2.019 or -0.643π, the phase angle between elements 
-1.64π to 0.36π is the visible range   

 
The Matlab code for creating these two plots is in 
GraphicalMethod.m and requires a second file polar3.m. 
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FRIIS FREE SPACE TRANSMISSION 
FORMULA 

The Friis transmission formula is used in measuring 
the gain of antennas and in determining the proper 
aperture size for an application.  The formula 
expresses the relationship between received and 
transmitted power, also called the power transfer ratio: 

( ) ( )
2

DIR DIR
4

R
T R

T

P
P r

λ =  π 
 

To determine the size of the antennas needed, it is 
necessary to know the minimum amount of power required 
at the receiving antenna: 

( )minimumminimum
S/NR NP P=  

where  N sP kT B=  

Ts = equivalent system noise "temperature"  [K] 
k = Boltzmann constant 1.380658×10-23  [J/K] 
PT = transmitted power  [W] 
PR = power received  [W] 
r = distance between antennas  [m] 
(DIR)T = directivity of the transmitting antenna  [no units] 
(DIR)R = directivity of the receiving antenna  [no units] 

 

RADAR 

Maximum detectable range: 

( )
( ) ( ) ( )

1
2 42

max 3

min

DIR

4 S/N
T

s

P
r

k T

 λ σ τ
=  

π  
   [m] 

Radar cross-section: 

( ) ( )
2

2 2back
2

incident

4 4
s

i

E
r r

E
σ = π = π

S
S

   [m2] 

Ambient noise:  N SP kT B=   [W] 

Incident power at the target:   

( )2incident
DIR

4
T

T

P
r

=
π

S    [W/m2] 

Receiver bandwidth:  
1

B =
τ

  [Hz] 

Ts = equivalent system noise "temperature"  [K] 
k = Boltzmann constant 1.380658×10-23  [J/K] 
τ = duration of transmitted pulse  [s] 
PT = transmitted power  [W] 

 

TL   TRANSMISSION LOSS   [dB] 

The transmission loss between a transmitting and 
receiving antenna depends on the antenna gains, the 
distance and the frequency: 

( ) ( ) 4
DIR DIR 20log

T R

r
TL

π
− = + −

λ
   [dB] 

(DIR)T = directivity of the transmitting antenna  [no units] 
(DIR)R = directivity of the receiving antenna  [no units] 
r = distance between antennas  [m] 
λ = wavelength [meters] 
see also PLANE EARTH TRANSMISSION LOSS p25. 

 

NUMERICAL METHODS 

COURANT STABILITY CONDITION 

The FDTD numerical method for calculating an 
electromagnetic field requires that the propagation 
speed of the calculations be equal to or greater than 
the propagation speed of the wave: 

1
2

t
c

δ  ∆ ≤  
 

 

∆t = increment of time between calculations [s] 
δ = increment of distance between discrete values, e.g. the 

distance between (i,j) and (i+1,j) [s] 
c = speed of light, (2.998×108 m/s in free space) 
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FDTD  FINITE DIFFERENCE TIME DOMAIN 

In this class, we did a 2D FDTD computer simulation.  
Refer to the document FDTD-homework10.pdf.  The 
FDTD is the simplest numerical method.  It is based 
on the Yee Grid.. 

The 2-dimensional Yee 
Grid at right is a 
coordinate system with 
electric field components 
located discretely at 
integer intercepts in the 
xy-plane and the magnetic 
components located 
intermediately as shown. 

2

3

H (0,½)
E (0,0)
H (½,0)y

z

x

0 1 2 3  
Hx Values of Hx depend on the past value of Hx 

at the same position and values of Ez above 
and below. 

( ) ( )

( ) ( )

1 1
2 21 1

2 2

0

, ,

, 1 ,

n n
x x

n n
z z

H i j H i j

t
E i j E i j

+ −+ = +

∆  − + − δµ

 
 

Hy Values of Hy depend on the past value of 
Hy at the same position and values of Ez 
to the left and right. 

( ) ( )

( ) ( )

1 1
2 21 1

2 2

0

, ,

1, ,

n n
y x

n n
z z

H i j H i j

t
E i j E i j

+ −+ = +

∆  + + − δµ

 
 

Ez Values of Ez depend on the past value of 
Ez at the same position and values of Hx 
above and below, and values of Hy to the 
left and right. 

( ) ( ) ( )

( ) ( )

( ) ( )

1
2

1 1
2 2

1 1
2 2

1 1
2

0

1 1
2 2

1
2

0

, , ,

, ,

, ,

nn n
z z y

n n
y x

n n
x z

t
E i j E i j H i j

H i j H i j

t
H i j J i j

++

+ +

+ +

∆ = + +δε

− − − +

∆+ − − ε

  

Calculations proceed in the order shown, Hx, Hy, then Ez.    
Special treatment is given to the boundaries. 

n is used to describe the relative order in time, e.g. n+½ 
occurs after n. 

∆t = increment of time between calculations [s] 
δ = increment of distance between discrete values, e.g. the 

distance between (i,j) and (i+1,j) [s] 
 

GEOMETRICAL OPTICS 

GEOMETRICAL OPTICS APPROXIMATION 

Observation
point

Reflected
ray0

Image

Specular
point

2 µ, ε, σ

µ , ε0 0

Direct ray

Antenna

1

   

( ) ( )
º

º ( )
º º

º º( )00
j 02 21j 01 ˆ ˆ1

01 02 21
kkA A

e y e y
− +−θ θ

= + Γ
+

E
r

 

A(θ) = far field radiation pattern 
º01  = distance from point 0 to point 1 

Γ = reflection coefficient, see REFLECTION COEFFICIENT 
p14. 

 

PLANE EARTH TRANSMISSION LOSS 

This is an approximation based on geometrical optics, 
not valid for tall antennas. 

Receiving
antenna

Transmitting
antenna r

h

   

( ) ( ) 410log 10log DIR DIR 40logR
T R

T

P
TL h r

P
 − = = −   

TL = transmission loss  [dB] 
(DIR) = directivity, unitless here (not dB) 
h = antenna height  [m] 
r = distance between antennas  [m] 

see also TRANSMISSION LOSS p24. 
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MATHEMATICS 

x + j y   COMPLEX NUMBERS 
 

0

y

Im

θ

A

Rex
 

jj cos j sinx y A Ae A Aθ+ = ∠θ = = θ + θ  

{ }j cosx y x A+ = = θRe  

{ }j sinx y y A+ = = θIm  

{ } 2 2Magnitude jx y A x y+ = = +  

{ } 1Phase j tan
y

x y
x

−+ = θ =  

452
j jj e e
π

°= =  

Expressing a complex number in terms of the natural 
number e.  Note that when using a calculator, the exponent 
of e must be in radians. 

( )+j+jj cba b a e a e °+ = = ,   where /180b c= × π  

Taking the square root of a complex number: 

( )
1 1

-j45 -j22.52 41 j 2 2 1.10 j0.455e e° °− = = = −  

With frequency information: 

{ } ( )j j cosz tae e a t zω = ω +Re  and 

{ } ( )j jj sinz tae e a t zω− = ω +Re  

 

COMPLEX CONJUGATES 

The complex conjugate of a number is simply that 
number with the sign changed on the imaginary part.  
This applies to both rectangular and polar notation.  
When conjugates are multiplied, the result is a scalar. 

22))(( bajbajba +=−+  

2))(( ABABA =°−∠°∠  

Other properties of conjugates: 

*)*****()*( FEDCBAFDEABC ++=++  
jBjB ee +− =)*(  

 

TRIG IDENTITIES 

j j 2cose e+ θ − θ+ = θ  
j j j2sine e+ θ − θ− = θ  
j cos j sine± θ = θ ± θ  

 

SINC( ) FUNCTION 

( ) ( )sin
sinc

v
v

v
=  

The sinc function may be involved when finding the 
½  -power beamwidth using a field expression.  The solution 
is 

( )sin 1
, 1.391558 radians

2

v
v

v
= =  

 

WORKING WITH LINES, SURFACES, AND 
VOLUMES 

ρl(r') means "the charge density along line l as a 
function of r'."  This might be a value in C/m or it 
could be a function.  Similarly, ρs(r') would be the 
charge density of a surface and ρv(r') is the 
charge density of a volume.   

For example, a disk of radius a having a uniform 
charge density of ρ C/m2, would have a total 
charge of ρπa2, but to find its influence on points 
along the central axis we might consider 
incremental rings of the charged surface as 
ρs(r') dr'= ρs2πr' dr'. 

If dl' refers to an incremental distance along a circular 
contour C, the expression is r'dφ, where r' is the 
radius and dφ is the incremental angle. 
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∇  NABLA, DEL OR GRAD OPERATOR   
[+ m-1] 

The del operator operates on a scalar to produce a 
vector.  Compare the ∇ operation to taking the time 
derivative.  Where ∂/∂t means to take the derivative 
with respect to time and introduces a s-1 component to 
the units of the result, the ∇ operation means to take 
the derivative with respect to distance (in 3 
dimensions) and introduces a m-1 component to the 
units of the result.  ∇ terms may be called space 
derivatives and an equation which contains the ∇ 
operator may be called a vector differential 
equation.  In other words  ∇A is how fast A changes 
as you move through space. 

in rectangular 
coordinates: 

ˆ ˆ ˆA A A
A x y z

x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

 

in cylindrical 
coordinates: 

1ˆˆ ˆA A A
A r z

r r z
∂ ∂ ∂

∇ = + φ +
∂ ∂φ ∂

 

in spherical 
coordinates: 

1 1ˆ ˆˆ
sin

A A A
A r

r r r
∂ ∂ ∂

∇ = + θ + φ
∂ ∂θ θ ∂φ

 

 

∇2  THE LAPLACIAN   [+ m-2] 
The divergence of a gradient 

Laplacian of a scalar in 
rectangular coordinates: 

2 2 2
2

2 2 2

A A A
A

x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

 

Laplacian of a 
vector in rectan-
gular coordinates: 

22 2
2

2 2 2
ˆ ˆ ˆyx z

AA A
A x y z

x y z

∂∂ ∂
∇ = + +

∂ ∂ ∂

v
 

In spherical and 
cylindrical 
coordinates: 

( )
( ) ( )

2 ·

grad div curl curl

A A A

A A

∇ ≡ ∇ ∇ − ∇ × ∇ ×

= −

v v v
v  

 

∇⋅, div D   DIVERGENCE   [+ m-1] 
The divergence operation is performed on a vector 
and produces a scalar.  The del operator followed by 
the dot product operator is read as "the divergence of" 
and is an operation performed on a vector.  In 
rectangular coordinates, ∇⋅ means the sum of the 
partial derivatives of the magnitudes in the x, y, and z 
directions with respect to the x, y, and z variables.  The 
result is a scalar, and a factor of m-1 is contributed to 
the units of the result. 

In the electrostatic context, divergence is the total 
outward flux per unit volume due to a source charge.  
For example, in this form of Gauss' law, where D is a 
density per unit area, ∇⋅D becomes a density per unit 
volume. 

div yx z
DD D

D D
x y z

∂∂ ∂
= ∇ ⋅ = + + = ρ

∂ ∂ ∂

v v
 

D
v

 = electric flux density vector  D E= ε
v v

  [C/m2] 
ρ = source charge density [C/m3] 

in rectangular 
coordinates: 

· yx z
DD D

D
x y z

∂∂ ∂
∇ = + +

∂ ∂ ∂

v
 

in cylindrical 
coordinates: ( )1 1

· z
r

D D
D rD

r r r z
φ∂∂ ∂

∇ = + +
∂ ∂φ ∂

v
 

in spherical coordinates: 

( ) ( )2

2

sin1 1 1
·

sin sin
rr D DD

D
r r r r

φθ
∂ ∂∂ θ

∇ = + +
∂ θ ∂θ θ ∂φ

v
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CURL   curl B B= ∇ ×
v v

   [+ m-1] 
The circulation around an enclosed area.  The curl 
operator acts on a vector field to produce another 
vector field.  The curl of vector B is 
in rectangular coordinates: 

curl

ˆ ˆ ˆy yx xz z

B B

B BB BB B
x y z

y z z x x y

= ∇ × =

∂ ∂   ∂ ∂∂ ∂ − + − + −    ∂ ∂ ∂ ∂ ∂ ∂    

v v

 

This can be written in determinant form and may be 
easier to remember in this form. 

ˆ ˆ ˆ

curl

x y z

x y z

B B
x y z

B B B

∂ ∂ ∂
= ∇ × =

∂ ∂ ∂

v v  

in cylindrical coordinates: 

( )
curl

1 1ˆˆ ˆz r z r

B B

rBBB B B B
r z

r z z r r r
φφ

= ∇ × =

 ∂∂ ∂ ∂ ∂ ∂ − + φ − + −    ∂φ ∂ ∂ ∂ ∂ ∂φ     

v v

 

in spherical coordinates: 

( )

( ) ( )

sin1ˆcurl
sin

1 1 1ˆ ˆ
sin

r r

B B
B B r

r

rB rBB B
r r r r

φ θ

φ θ

 ∂ θ ∂
= ∇ × = − + 

θ ∂θ ∂φ  
 ∂ ∂ ∂ ∂

θ − + φ −   θ ∂φ ∂ ∂ ∂θ    

v v

 

The divergence of a curl is always zero: 

 ( )· 0H∇ ∇× =
v

 

 

DOT PRODUCT   [= units2] 
The dot product is a scalar value. 

( ) ( ) zzyyxxzyxzyx BABABABBBAAA ++=++++= zyxzyxBA ˆˆˆ•ˆˆˆ•  

ABcos• ψ= BABA  

0ˆ•ˆ =yx ,  1ˆ•ˆ =xx  

( ) yzyx BBBB =++= yzyxyB ˆ•ˆˆˆˆ•  

ψ

B

A

A•B 
Projection of B 
along â: 

( )aaB ˆˆ•  

B

ψ
â

 
â

ψ

B

 
The dot product of 90° vectors is zero. 
The dot product is commutative and distributive: 

ABBA •• =  ( ) CABACBA ••• +=+  
 

CROSS PRODUCT 
The cross product is an operation performed on two 
vectors resulting in a third vector perpendicular to the 
plane in which the first two lie. 

( ) ( )
( ) ( ) ( )xyyxzxxzyzzy

zyxzyx

BABABABABABA

BBBAAA

−+−+−=

++×++=×

zyx

zyxzyxBA

ˆˆˆ

ˆˆˆˆˆˆ
 

ABsinˆ ψ=× BAnBA  

where n̂  is the unit vector normal to 
both A and B (thumb of right-hand rule). 

BAAB ×−=×  

zyx =×  zxy −=×  0=× xx  

φ× =z r  φ× = −r z  
The cross product is distributive: 

( ) CABACBA ×+×=+×  
Also, we have: 

( ) ( ) ( )× × = ⋅ − ⋅A B C A C B A B C  

n

ψ

A×B

A

B  

Cylindrical Coordinates: 

ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆr z z r z r× φ = φ× = × = φ  

Spherical Coordinates: 

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆr r r× θ = φ θ×φ = φ× = θ  

 

GEOMETRY 
SPHERE 

Area 24 rA π=  

Volume 3

3
4

rV π=  

ELLIPSE 
Area ABA π=  

Circumference 

2
2

22 ba
L

+
π≈  

 

STOKES' THEOREM 

S is any unbroken surface (doesn't have to be flat).  L 
is is the closed path (line) around its border.  Stokes' 
theorem says that the line integral of a vector field 
around the path L is related to the surface integral of 
the curl on that vector field.   

( )· ·
L S
V dl V dS= ∇×∫ ∫

v vv vÑ  
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COORDINATE SYSTEMS 
Cartesian or Rectangular Coordinates: 

ˆ ˆ ˆ( , , )x y z xx yy zz= + +r  x̂  is a unit vector 

222 zyx ++=r  

Spherical Coordinates: 

),,( φθrP  r is distance from center 

 θ is angle from vertical 
 φ is the CCW angle from the x-axis 

r̂ , θ̂ , and φ̂  are unit vectores and are functions of 
position—their orientation depends on where they 
are located. 

Cylindrical Coordinates: 

),,( zr φC  r is distance from the vertical (z) axis 

 φ is the CCW angle from the x-axis 
 z is the vertical distance from origin 

 

COORDINATE TRANSFORMATIONS 
Rectangular to Cylindrical: 

To obtain: ˆˆ ˆ( , , ) r zr z rA A zAφφ = + φ +A  

22 yxAr +=  ˆ ˆ ˆcos sinr x y= φ + φ  

x
y1tan −=φ  ˆ ˆ ˆsin cosx yφ = − φ + φ  

zz =  ˆ ˆz z=  
Cylindrical to Rectangular: 

To obtain: ˆ ˆ ˆ( , , )x y z xx yy zz= + +r  

φ= cosrx  ˆˆ ˆ cos cosx r= φ − φ φ  

φ= sinry  ˆ ˆ ˆsin cosr yφ = φ + φ  

zz =  ˆ ˆz z=  
Rectangular to Spherical: 

To obtain: ˆ ˆˆ( , , ) rr rA A Aθ φθ φ = + θ + φA  

222 zyxAr ++=
ˆ ˆ ˆ ˆsin cos sin sin cosr x y z= θ φ + θ φ + θ  

222

1cos

zyx

z

++
=θ

−

ˆ ˆ ˆ ˆcos cos cos sin sinx y zθ = θ φ + θ φ − θ  

x
y1tan −=φ  ˆ ˆ ˆsin cosx yφ = − φ + φ  

Spherical to Rectangular: 

To obtain: ˆ ˆ ˆ( , , )x y z xx yy zz= + +r  

φθ= cossinrx
ˆ ˆˆ ˆsin cos cos cos sinx r= θ φ − θ θ φ − φ φ  

φθ= sinsinry  

ˆ ˆsin sin
ˆ cos sin
ˆ cos

y r= θ φ

+ θ θ φ

+ φ φ

 

θ= cosrz  

ˆˆˆ cos sinz r= θ − θ θ  

r

x
φ

y

θ

z

Point
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VECTOR IDENTITIES 

( )∇ φ + ψ = ∇φ + ∇ψ   

( )· · ·A B A B∇ + = ∇ + ∇
v vv v

 

( )A B A B∇× + = ∇ × + ∇ ×
v vv v

 

( )∇ φψ = φ∇ψ + ψ∇φ  

( )· · ·A A A∇ ψ = ∇ψ + ψ∇
v v v

 

( )· · ·A B B A A B∇ × = ∇× − ∇×
v v vv v v

 

( )A A A∇× φ = ∇φ× + φ∇×
v v v

 

( ) ( ) ( )· · · ·A B A B B A B A A B∇× × = ∇ − ∇ + ∇ − ∇
v v v v vv v v v v

 

2·∇ ∇φ = ∇ φ  

· 0A∇ ∇ × =
v

 

0∇×∇φ =  

( ) 2·A A A∇×∇× = ∇ ∇ − ∇
v v v

 

( )
( ) ( ) ( ) ( )

·

· ·

A B

A B B A A B B A

∇ =

∇ + ∇ + × ∇× + × ∇×

v v
v v v vv v v v  

· · ·A B C B C A C A B× = × = ×
v v v v v vv v v

 

( ) ( ) ( )· ·A B C B A C C A B× × = −
v v v v v vv v v

 

 

FOURIER TRANSFORM 

The Fourier transform converts a function of time to a 
function of frequency.   

( ) ( ) j tF f t e dt
+∞ − ω

−∞
ω = ∫  

Inverse Fourier transform: 

( ) ( ) j1
2

tf t F e d
+∞ + ω

−∞
= ω ω

π ∫  

Note that the signs in the exponent for these two functions 
are shown as they are by convention but they could be 
reversed as long as one is positive and the other is 
negative. 

 

FOURIER TRANSFORM EXAMPLES 

A gaussian with a sharp peak (heavy line) becomes a 
gaussian with a "softer" peak after performing the 
Fourier transform.   

 
A gaussian with a more rounded peak (heavy line 

below) becomes a gaussian with a sharper peak 
after performing the Fourier transform. 

 
Taking this to the extreme, the Fourier transform of a 
constant (horizontal line) becomes a spike and the 
transform of a spike is a horizontal line.  All this is relevant 
to antennas because in the farfield expression for a line 
current is a space factor, which is actually the Fourier 
transform of the current in the antenna element. 

( )
0

0

j
+j cosff

0 0

"space factor""element pattern" dependent on current the field due to an distribution and lengthinfinitesimal dipole

ˆ j sin
4

k r h k z

h

e
k I z e dz

r

− + ′ θ

−
′ ′= θ η θ

π ∫E
v

144424443144424443
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GLOSSARY 

anisotropic materials  materials in which the electric 
polarization vector is not in the same direction as the electric 
field.  The values of ε, µ, and σ are dependent on the field 
direction.  Examples are crystal structures and ionized 
gases. 

anechoic chamber  an enclosed space that absorbes 
radiation so that reflections do not interfere with tests. 

dielectric  An insulator.  When the presence of an applied 
field displaces electrons within a molecule away from their 
average positions, the material is said to be polarized.  
When we consider the polarizations of insulators, we refer to 
them as dielectrics. 

empirical  A result based on observation or experience rather 
than theory, e.g. empirical data, empirical formulas.  
Capable of being verified or disproved by observation or 
experiment, e.g. empirical laws. 

evanescent wave  A wave for which β=0.  α will be negative.  
That is, γ is purely real.  The wave has infinite wavelength—
there is no oscillation. 

incident plane  The incident plane is defined by the incident 
wave vector and a line normal to the boundary surface. 

isotropic materials  materials in which the electric 
polarization vector is in the same direction as the electric 
field.  The material responds in the same way for all 
directions of an electric field vector, i.e. the values of ε, µ, 
and σ are constant regardless of the field direction. 

linear materials  materials which respond proportionally to 
increased field levels.  The value of µ is not related to H and 
the value of ε is not related to E.  Glass is linear, iron is non-
linear. 

transverse  plane perpendicular, e.g. the x-y plane is 
transverse to z. 

 
 


