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INTRODUCTION TO AUTOMATIC CONTROLS 
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LAPLACE TRANSFORMS
We use Laplace transforms because we are dealing 

with linear dynamic systems and it is easier than 
solving differential equations.  We don't use Fourier 
transforms because we are dealing with the 
transient response and because a Fourier transform 
won't handle a system that "blows up". 

 

LAPLACE TRANSFORM 
The Laplace transform is used to convert a function f(t) 
in the time domain to a function F(s) in the s domain, 
where s is a complex number: 

( ) ( )
0

stF s e f t dt
∞ −= ∫  

f(t) is 0 for t<0.  f(t) can "blow up" or be piecewise.  We are 
free to pick the value of s to make the integral converge; 
however, once the calculation is made you can use the result 
everywhere.  For example if ( ) 10tf t e= , then s must be 10 or 

greater to do the integration.  But the result is 

( ) ( )1/ 10F s s= − , in which s can be less than 10. 

Misc:  s j= σ + ω ,   1jxe =  

 

INVERSE LAPLACE TRANSFORM 
The inverse Laplace transform is used to convert a 
function F(s) in the s domain to a function f(t) in the 
time domain, where s is a complex number: 

( ) ( )1
2

C j st

C j
f t F s e ds

j

+ ∞

− ∞
=

π ∫  

In the conceptual view, c is 
a real number defining a 
line in the s-plane as 
shown at right.  All poles of 
F(s) must lie to the left of 
this line. 

Poles are always 
symmetric about the real 
axis. 

c-j

c+j

Real axis c

Imaginary axis

∞

∞
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INVERSE LAPLACE TRANSFORM 
Second Order Conjugate Pair Example 

( ) ( )( )
100

1 10 1 10
F s

s s j s j
=

+ + + −
 

( ) 10
10 10 cos10 sin10

101
t tf t e t e t− − = − −   

A second order 
conjugate pole pair in 
the left-hand side of the 
s-plane results in a 
damped sinusoid in the 
time domain. 

 

 

SYSTEM STABILITY 
Stable:  A system is stable is there are no roots in the right-
hand plane and no repeated roots on the jω axis. 

Unstable:   A system is unstable if there are any roots in the 
right-hand plane or repeated roots on the jω axis. 

Asymptotically stable:  A system is asymptotically (very) 
stable if all roots are in the left-hand plane. 

 

SOLUTION USING RESIDUES 

( ) ( ) ( )1
residues of 

2

C j st

C j
f t F s e ds F s

j

+ ∞

− ∞
= =

π ∑∫  

The inverse Laplace transform can be found by 
taking the sum of the residues of F(s).  The function 
F(s) has a residue at each pole of the function.  This 
method requires that the function F(s) have more 
poles than zeros: 

Example: 

( ) ( )
( )

10 5

2

s
F s

s s

+
=

−
 

For example, this function has a zero 
at -5 and poles at 0 and 2.  Zeros 
are values for s that cause the 
numerator to be zero; poles are 
values for s that cause the 
denominator to be zero. 

The residue of F(s) at a simple pole is found by taking the 
limit as follows: 

( ) ( )
pole

residue lim pole st

s
s F s e

→
 = −   

So for pole=0 in the example above, we have: 

( )
0

lim 0
s

s
→

−
( )10 5s

s

+

( )
( )

( )
010 0 5 50

0 2 22
st te e

s

  +
= = 

− −−  
 

and for pole=2 we have: 

( )
2

lim 2
s

s
→

−
( )

( )
10 5

2

s

s s

+

−
( ) 2 210 2 5 70

2 2
st t te e e

  +  = =
  

 

So we solve the inverse Laplace transform by 

( ) ( )residues of f t F s= ∑  

( ) ( )2 250 70
35 25

2 2
t tf t e e = + = − − 
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RESIDUES: REPEATED ROOTS 
When there is a repeated root, the procedure for 
solution using residues changes. 

( )
( )

( ) ( ) ( )
1

1pole

1
residue lim pole

1 !

n
n st

ns

d
s F s e

n ds

−

−→
 = − −

 

Example:  ( ) ( )
( )3

10 5

2

s
F s

s

+
=

−
 

For example, this 
function has a zero at -5 
and 3 poles at s=2.   

( )
( )

( ) ( ) ( )
( )

( )

3 1
3

33 1pole

2

2pole

2

2pole

pole

2 2

pole

10 51
residue lim 2

3 1 ! 2

1
lim 10 50

2
1

lim 10 50
2
1

lim 10 10 50
2
1

lim 10 10 10 50
2

st

s

st

s

st st

s

st st st

s

st st st st

s

sd
s e

ds s

d
s e

ds
d

se e
ds
d

st e e t e
ds

st e t e t e t e

−

−→

→

→

→

→

 +
= − 

− −  

 = + 

 = + 

 = + + 

= + + +

( )

2 2 2 2 2 2

2 2 2 2

1
20 10 10 50

2
1

70 20 35 10
2

t t t t

t t

t e t e t e t e

e t t t t e

 

 = + + + 

 = + = + 

 

So we solve the inverse Laplace transform by 

( ) ( )residues of f t F s= ∑  

and in this case there is only one residue so 

( ) ( )2 235 10 tf t t t e= +  

 

SOLUTION USING DIVISION 
This method must be used when the number of zeros 
is equal or greater than the number of poles. 

Example: 

( ) ( )2
25 3

5

s
F s

s

+
=

+
 

For example, this function has two 
zeros at -3 and a pole at -5.  We 
carry out the multiplication in the 
numerator and then divide by the 
denominator: 

( )
225 150 225 150

25 25
5 5

s s
f s s

s s
+ +

= = + +
+ +

 

The problem is now divided into three parts: 

( )1 25F s s= ,  ( )2 25F s = ,   and  ( )3

150
5

F s
s

=
+

 

Parts 1 and 2 are done by inspection and part 3 is by 
residues as before: 

( ) ( )1 25
d

f t t
dt

= δ ,  ( ) ( )2 25f t t= δ ,  ( ) 5
3 150 tf t e−=  

This gives the result:  ( ) ( ) ( ) 525 25 150 td
f t t t e

dt
−= δ + δ +  

note: δ(t) is the impulse function, which is a single input 
pulse having a large amplitude, short duration, and a 
plotted area of one. 

 

FINDING THE DIFFERENTIAL EQUATION 
THAT DESCRIBES A TRANSFER FUNCTION 

Example:  Given the transfer 
function: 

( ) ( )
( )2

10 5

1

s
G s

s s

+
=

+
 

Perform the multiplication and, 
assuming all initial conditions are 
zero, write: 

( )
( ) 3 2

10 50Y s s
R s s s

+
=

+
 

Then cross-
multiply: 

( ) ( ) ( ) ( )3 2 10 50s Y s s Y s sR s R s+ = +  

Take the inverse Laplace 
transform to get: ( )

3 2

3 2 10 50
d y d y dr

R t
dt dt dt

+ = +  

This differential equation describes the original transfer 
function above. 
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What if all initial conditions are not zero? 

Example:  Given these initial 
conditions to the transfer 
function above: 

( )0y a=  

( )0
d

y b
dt

=  

( )
2

2
0

d
y c

dt
=  

Working backwards in the previous example, take the 
Laplace transform of each term of the result, incorporating 
the new initial conditions: 

( ) ( ) ( ) ( )

( )

3 2
3 2

3 2

3 2

0 0 0
d y d d

s Y s s y s y y
dt dt dt

s Y s as bs c

 
= − − − 

 
= − − −

L
 

( )
2

2
2

d y
s Y s as b

dt

 
= − − 

 
L  

( )10 10 10
dr

sR s a
dt

  = − 
 

L  

( ){ } ( )50 50r t R s=L  

So the Laplace transform is: 

( ) ( ) ( ) ( )3 2 2 10 10 50s Y s as bs c s Y s as b sR s a R s− − − + − − = − +  

Grouping terms we get: 

( ) ( ) ( ) ( )3 2 210 5 10s s Y s s R s as as bs a b c+ = + + + + + + +  

And dividing by (s3+s2) gives us the result: 

( ) ( ) ( )
( )

( ) ( )
( )

2

2 2

10 110 5

1 1

a s s b s cs R s
Y s

s s s s

+ + + + ++
= +

+ +
 

Notice that the first term of the result comes from the 
original transfer function and the second term is due to the 
initial conditions. 

 

BLOCK DIAGRAMS 
Block diagrams are used to represent transfer 
function operations of a system.  Some basic 
operations are as follows: 

G s( )2

G s( )1 s( )G1 G s( )2

 

x2

G s( )1 1x

x2

x

G s( )11/

G s( )1 1

 

R

-1

R2

R1
xΣ = R -1 1 2

 
 

 
MASON'S GAIN RULE 

Mason's gain rule is a method of finding the transfer 
function of a block diagram.  For an example of using 
Mason's rule, see MasonsRule.pdf. 

j j
j

M
M

∆
=

∆

∑
 

M = transfer function or gain of the system 
Mj = gain of one forward path 
j = an integer representing a forward paths in the system 
∆j = 1 – the loops remaining after removing path j.  If none 

remain, then ∆j = 1. 
∆ = 1 - Σ loop gains + Σ nontouching loop gains taken two 

at a time - Σ nontouching loop gains taken three at a 
time + Σ nontouching loop gains taken four at a time - 
· · ·  

 

UNITY FEEDBACK SYSTEM 

( )C s(R )s G ( )s

 
The transfer function for this system is 

( )
( )

( )
( )1

C s G s

R s G s
=

+
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CLOSED LOOP SYSTEM 

( )C s(R )s G( )s

( )sH
 

The transfer function for this system is 

( )
( )

( )
( ) ( )1

C s G s

R s G s H s
=

+
 

The transfer function for the open loop system (the output 
is taken to be after H(s)) is 

( ) ( ) ( )1F s G s H s= +  

Poles of the closed loop system are zeros of the open loop 
system.  The closed loop system is unstable if F(s) has 
zeros in the right-hand plane. 

 

r(t), R(s)   BASIC TYPES OF INPUTS 
Unit step input 

( ) 1, 0r t t= >  

( ) 1
R s

s
=  

1

1

2 3

2

4 t  

Unit ramp input 

( ) , 0r t t t= >  

( ) 2

1
R s

s
=  

1 2 3 4 t

2

1

3

 

Unit ramp2 input 

( ) 2 , 0r t t t= >  

( ) 3

2
R s

s
=  

t21 3

6

2

4

8

 

 

BASIC TYPES OF SYSTEMS 
Type 0 system 

• no poles at the origin 
• tracks a step input with finite error 
• does not track a ramp input 
• does not track a square ramp input 

 

Type 1 system 
• has one pole at the origin 
• tracks a step input with zero error 
• tracks a ramp input with finite error 
• does not track a square ramp input 

 

Type 2 system 
• has two poles at the origin 
• tracks a step input with zero error 
• tracks a ramp input with zero error 
• tracks a square ramp input with finite error 

 

 
STATE VECTOR MODEL 

The state vector model is another method of 
modeling systems.  It is done in the time domain and 
contains a 1st order differential equation.  The 
solution is a vector. 

State Model:  ( ) ( ) ( )X t AX t bu t= +&  

for example where A is a 2×2 matrix we would have: 

( )
( )

( )
( ) ( )1 111 12 1

2 221 22 2

x t x ta a b
u t

x t x ta a b

      
= +      

      

&
&  

and this translates to: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 11 1 12 2 1

2 21 1 22 2 2

x t a x t a x t b u t

x t a x t a x t b u t

= + +

= + +

&
&

 

The number of elements in the vectors (2 in this case) 
corresponds to the order of the polynomial in the 
denominator of the transfer function. 

X(t) = state vector, consisting of the output signal and its 
derivatives 

( )X t&  = first derivative of the state vector 

A = a square matrix 
b = a vector 
u(t) = system input signal 

Output Equation:  ( ) ( )c t DX t=  

c(t) = system output signal 
D = a row vector that always has 1 as the first element and 

zeros for the remaining elements 

We pick a solution:  
( ) ( )
( ) ( )

1

2

x t c t

x t c t

=

= &  

The solution is not unique, but it is what we use for this 
type of problem.  For larger than a 2nd order polynomial we 

would continue with ( ) ( )3x t c t= &&  etc. 
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FINDING THE TRANSFER FUNCTION FROM 
A STATE MODEL 

Given the state vector model, the transfer function 
may be found using the formula: 

( ) [ ] ( )1
C s D sI A bU s

−
= −  

where I is the identity matrix. 

For example, given  x Ax bu= +& ,  c Dx= ,   

5 6

1 0
A

− − 
=  

 
,  

1

1
b

 
=  

 
,  [ ]1 0D =  

we have: 

( ) [ ] ( )
1

1 0 5 6 1
1 0

0 1 1 0 1
C s s U s

−
 − −      

= −      
      

 

( )
( ) [ ]

1
5 6 1

1 0
1 1

sC s

sU s

−+   
=    −   

 

( )
( ) [ ]

5 6
adj

11
1 0

5 6 1

1

s

C s s
sU s

s

+ 
 −   =  +  
−

 

For more about 
finding the 
adjoint of a 
matrix, see the 
file Matrices.pdf. 

( )
( ) [ ] ( )

6

11 5
1 0

15 6

s

C s s

U s s s

− 
 +   =  + +  

 

( )
( ) [ ]

( ) ( )

( ) ( )

6
5 6 5 6 1

1 0
1 5 1
5 6 5 6

s
s s s sC s

sU s
s s s s

− 
 + + + +   =   +  
 + + + +  

 

( )
( ) 2 2

16
15 6 5 6

C s s
U s s s s s

 − =   + + + +   
 

and the transfer function is 
( )
( ) ( )( )

6
2 3

C s s
U s s s

−
=

+ +
 

 

e(t)   TRACKING ERROR 

The tracking error is the difference between the input 
and output of a system. 

( ) ( ) ( )e t r t c t= −  

tracking error

a
m

p
l

i
t

u
d

e

system
response
(output)

system
input

t

(  )te

 

 

E(s)   TRACKING ERROR, LAPLACE 
TRANSFORM 

( ) ( ) ( )E s R s C s= −  

The Laplace transform of the tracking error of a 
system. 

For the system 
(no feedback) 

( ) ( ) ( )C s G s R s=  

The Laplace transform of 
the tracking error is 

( ) ( ) ( )1E s G s R s= −    

For the system 
(unity feedback) 

( ) ( )
( ) ( )

1

G s
C s R s

G s
=

+
 

The Laplace transform of 
the tracking error is 

( ) ( ) ( )1
1

E s R s
G s

=
+

 

 

ess   STEADY STATE TRACKING ERROR 

The tracking error of a system as  t → ∞.  The steady 
state tracking error can be computed from E(s), the 
LaPlace transform of the tracking error.  Note that as 
t → ∞ in the time domain, s → 0 in the frequency 
domain. 

( )
0

limss s
e sE s

→
=  

so, for a unity feedback system, 

( ) ( )
0

1
lim

1ss s
e s R s

G s→
=

+
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PHASE LAG COMPENSATION 
Phase lag compensation reduces the high frequency 
gain to zero at the location of the desired phase 
margin.   

The phase lag 
compensator 
shifts the zero 
crossing downward 
to the location of 
the desired phase 
margin by adding a 
pole and zero 
below this point.  A 
negative phase 
shift occurs, but not 
at the zero-crossing 
point. 

new zero-
crossing
point

1
aT

Phase

Amplitude

ω

ω

T

Phase
angle

0°

Gain
dB

1

 

1) Find the value of K that satisfies the value specified for 
the steady-state tracking error ess. 

( ) ( )
0

1
ramp

limss

s

e
KsG s

→

=
  

 

2) Draw the bode plot of KG(s) and find the frequency at 
which the desired phase margin occurs.  This will be the 
compensated zero-crossing point ω0.  Determine the 
amount of dB gain shift required to adjust the plot to cross 
zero at this point (a downward shift is negative). 

3) Find the value of a using the dB gain shift found above. 

20log dB gain shifta =  
4) Now find T. 

0

10
aT

= ω  

5) The compensating factor for the system transfer function 
is: 

( ) ( )
( )lag

1

1

aT s
G s

T s

+
=

+
 

6) And the new transfer function is 

( ) ( )lagG s KG s  

 

PHASE LEAD COMPENSATION 
Phase lead compensation shifts the zero-crossing 
point and reduces the phase angle at that point by 
adding a new pole and zero to the transfer function. 

The phase lead 
compensator shifts 
the zero crossing 
slightly upward to a 
point midway 
between the added 
pole and zero.  The 
phase plot is bowed 
upward, with the 
maximum effect 
occurring at the new 
zero-crossing 
frequency ωmax. 

Amplitude

Phase

1 1

0°

Phase
angle

aT T

Gain
dB new

zero-
crossing
point

ω

ω

 

1) Find the value of K that satisfies the value specified for 
the steady-state tracking error ess. 

( ) ( )
0

1
ramp

limss

s

e
KsG s

→

=
  

 

2) Draw the bode plot of KG(s) and find the uncompensated 
phase margin. 

3) Find the value of a using the specified phase margin 
plus a 5° fudge factor and the uncompensated phase 
margin. 

( )max comp. uncomp.

1
sin sin PM 5 PM

1
a
a

−
φ = + ° − =

+
 

4) Using a, find the uncompensated gain at the frequency 
which will become the new zero-crossing point.  Note that 
in this expression a factor of 10 is used instead of 20 
because this gain is located midway up the 20 dB/decade 
slope as shown above. 

Gain 10log a= −  
Find the new zero-crossing point ωmax by locating the 
frequency on the uncompensated bode plot that has the 
above gain.  This will also be the point at which the 
compensator produces maximum phase shift. 

5) Now find T. 

max

1

T a
ω =  

6) The compensating factor for the system transfer function 
is: 

( ) ( )
( )lead

1

1

aT s
G s

T s

+
=

+
 

7) And the new transfer function is 

( ) ( )leadG s KG s  
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PID CONTROLLERS 
PID stands for proportional integral derivative: 

( ) ( )
}integral derivative

proportional

0

t

p I d

de
k e t K e t dt K

dt
+ +∫

64748678
 

or   I
p d

K
K K s

s
+ +  

We won't cover this controller, but we will cover the P-D 
and the P-I controllers. 

 
P-I CONTROLLERS 

The P-I Controller solution may be obtained using the 
P-D solution technique.   

"P-I" Controller 

K 1
s(  )I (  )sH)(E s Kp+

 
"P-I" Controller, redrawn 

(   )1 + K
Kp

Kp
I 1

s (  )sHE(s)

 

1) Given the transfer function H(s), find the values of Kp and 
Kd that would achieve P-D compensation for the transfer 
function H(s)/s.  These will be the values for Kp and KI 
respectively in the P-I controller. 

2) The compensated transfer function is 

( )1
1 I

p
p

K
K H s

K s

  
+      

 

 

P-D CONTROLLERS 
The P-D controller adds a zero at –(Kp/Kd).  If less 
than 45° of phase shift is required then the gain will 
not change. 

"P" Controller 

(  )sG)(E s Kp

 

"P-D" Controller 

(  )sG)(E s Kp d+K s

 

"P-D" Controller, redrawn 

(   )E(s) Kp 1 + K
Kp

d s (  )sG

 
1) Find the value of Kp that satisfies the value specified for 
the steady-state tracking error ess. 

( )
( )

0

1
ramp

lim
ss

ps

e
K sG s

→

=
  

 

2) Draw the bode plot of KpG(s) and find the 
uncompensated phase margin. 

3) If we do not need to increase the phase margin by more 
than 45°, then ω0 will not change.  Use ω0 from the plot and 
solve for Kd. 

( )comp. uncomp. 0tan PM 5 PM d

p

K
K

+ ° − = ω  

If we do need to increase the phase margin by more than 
45°, then use the following expression to find the 
uncompensated gain at the new ω0.  Read the new ω0 from 
the plot and plug in to the above expression to find Kd. 

( ) ( ) 22

comp. uncomp.

Gain

20log 1 tan PM 5 PM

=

 − + + ° − 
 

4) The compensated transfer function is 

( )1 d
p

p

K
K s G s

K

  
+      
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GENERAL 

TRIG IDENTITIES 
Here are some identities we use: 

θ±θ=θ± sincos je j  

 

 
 

 

 

 



Tom Penick    tomzap@eden.com    www.teicontrols.com/notes    AutomaticControls.pdf    5/10/2000   Page 10 of 10 

GLOSSARY 
closed loop system  compensates for disturbances by 

measuring the output response and returning that through a 
feedback path to compare with the input at the summing 
junction. 

open loop system  an input or "reference" is applied to a 
controller that drives a process.  There is no feedback 
compensation. 

PID  proportional + integral + derivative, or 3-mode controller. 

simple  means not repeated or duplicated 

steady-state response  the approximation to the desired or 
commanded response 

transient response  the change from one state to another 

 

 


