
Tom Penick tomzap@eden.com www.teicontrols.com/notes 9/30/2001

Strings in C Programming

DECLARATION STATEMENT

A string in C is actually a character array. There are several methods of declaring the variable.
This first example declares a variable that can hold 4 characters. Below it is the initialized version
of the same declaration. The 5th space is for the end of string character that is automatically
added to the end of all strings:

char var[5];
char var[5] = "abcd";
char var[] = "abcd"; /* Equivalent to above. */

This type of declaration precludes the subsequent use of the assignment operator to
change the value stored in var. However, the value may be changed by using functions
such as strcpy(), fscanf(), and fgets().

Another declaration method is to declare a pointer variable. Notice in the first example a
size has not be determined. The assignment operator may be used to initialize the array
later but functions may not be used for initialization. Once initialized, the maximum size
of the array has been set as far as functions are concerned and functions may be used to
change the value. I think the assignment operator may be used to subsequently assign
longer strings to the pointer but I am not sure yet. The second example shows
initialization during declaration. p345

char *var;
char *var = "abcd";

SCANF()

The scanf() function requires the use of addresses of variables.

syntax: scanf("control string(s)", &variable(s));
i.e.: scanf("%d %d", &num1, &num2);

When using the scanf() function to read a character or string from the keyboard, empty the
buffer afterward (the carriage return is still in there) using the following code:

fflush(stdin);

Tom Penick tomzap@eden.com www.teicontrols.com/notes 9/30/2001

SPRINTF()

The sprintf() function takes a list of arguments and formats them into an array.

syntax: sprintf(array, "control string(s)", variable(s));

 sprintf(buffarray,"Weight=%6u Temperature=%4u\n",LoadCellData,Temperature);

The control instructions tell
how the data is to be arranged
in the array.

%6u means insert the first
argument next, allow a
minimum of 6 spaces for
the data, and convert the
argument to unsigned
decimal notation. u is
a conversion character as
described below.

Spaces and text
goes in the buffer
verbatim.

This text goes
in the buffer
verbatim.

An array large
enough to hold
all of the arguments.

%4u means insert the next
argument next, allow a
minimum of 4 spaces for
the data, and convert the
argument to unsigned
decimal notation. u is
a conversion character as
described below.

Start a
new line.

A list of arguments to be
included in the array as
described by the control.

The conversion characters are:

d decimal notation
o unsigned octal notation
x unsigned hexadecimal notation
u unsigned decimal notation
c a single character
s string
e decimal notation of a float or double in the form m.nnnnnnE±xx
 The number of n’s may be specified.
f decimal notation of a float or double in the form mmm.nnnnn
 The number of n’s may be specified.
g Use %e or %f, whichever is shorter

Tom Penick tomzap@eden.com www.teicontrols.com/notes 9/30/2001

PASSING STRINGS TO FUNCTIONS

To pass addresses to a function (referred to as pass by reference), you can use the array name. If
your function needs to know how may elements are in the array, you can pass that value as a
second argument:

FUNCTION PROTOTYPE

void MyFunct(char []);
void MyFunct(char [],int);

FUNCTION CALL

MyFunct(ArrayName);
MyFunct(ArrayName,HowMany);

FUNCTION HEADER

void MyFunct(AryNm[])
void MyFunct(AryNm[],Num)

If you have declared a pointer to the array (see the sheet on pointers) you can pass the pointer. Be
sure your function expects a pointer to an array:

FUNCTION PROTOTYPE

void MyFunct(char *);
void MyFunct(char *,int);

FUNCTION CALL

MyFunct(Ptr);
MyFunct(Ptr,HowMany);

FUNCTION HEADER

void MyFunct(*P)
void MyFunct(*P,Num)

