
Chapter 15
Functions of Several Variables

Function of Two Variables:  15.1 p841  Let D be a set of
ordered pairs of real numbers.  If to each ordered pair
(x, y) in D there corresponds a real number f(x, y),
then f is called a function of x and y.  The set D is
the domain of f, and the corresponding set of values
for f(x, y) is the range of f.

Function of Three Variables:  15.1 p841  For the function
given by z = f(x, y), we call x and y the independent
variables and z the dependent variable.

Neighborhoods in the Plane:  15.2 p853  Using the formula
for the distance δ > 0  between two points (x, y) and
(x0, y0) in the plane, we define the δ − neighborhood
about (x0, y0) to be the disc centered at (x0, y0) with
radius δ  (that's a "delta").
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When this formula contains the less than inequality,
the disc is called open, and when it contains the less
than or equal to inequality, the disc is called closed.
A point (x0, y0) in a plane region R is an interior point
of R if there exists a δ − neighborhoodabout (x0, y0) that
lies entirely in R.  If every point in R is an interior
point, then we call R an open region.  A point (x0, y0)
is a boundary point of R if every open disc centered
at (x0, y0) contains points inside R and points outside
R.  By definition, a region must contain its interior
points, but it need not contain its boundary points.  If
a region contains all its boundary points, then we say
that the region is closed.  A region that contains
some but not all its boundary points is neither open
nor closed.

Definition of the Limit of a Function of Two Variables:  15.2

p854  Let f be a function of two variables defined,
except possibly at (x0, y0), on an open disc centered at
(x0, y0), and let L be a real number.  Then
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Definition of Continuity of a Function of Two Variables:
15.2 p857  A function f of two variables is continuous at
a point (x0, y0) in an open region R if f(x0, y0) is
defined and is equal to the limit of f(x, y) as (x, y)
approaches (x0, y0).  That is,
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The function f is continuous in the open region R if
it is continuous at every point in R.

Properties of Continuous Functions of Two Variables:  15.2

p857  If k is a real number and f and g are continuous at
(x0, y0), then the following functions are continuous at
(x0, y0).

Scalar multiple: kf
Sum and difference:  f g±
Product:  fg
Quotient:  f/g, if g x y( , )0 0 0≠

Continuity of a Composite Function:  15.2 p858  If h is
continuous at (x0, y0) and g is continuous at h(x0, y0),
then the composite function given by
( )( , ) ( ( , ))g h x y g h x yo =  is continuous at (x0, y0).  That
is,
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Definition of Continuity of a Function of Three Variables:
15.2 p859  A function f of three variables is continuous
at a point (x0, y0, z0) in an open region R if f(x, y, z) is
defined and equal to the limit of f(x, y, z) as (x0, y0, z0)
approaches (x0, y0, z0).  That is,
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Partial Derivatives:  15.3 p863  If z = f(x, y), then the first
partial derivatives of f with respect to x and to y are
the functions fx and fy defined by
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provided the limits exist.

In other words, if  z = f(x, y),  then to find fx we
consider y constant and differentiate with respect to
x.  To find fy we consider x constant and differentiate
with respect to y.

Notation for First Partial Derivatives:  15.3 p863  For
z = f(x, y), the partial derivatives fx and fy are denoted
by
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The first partials evaluated at the point (a, b) are
denoted by
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In other words, the values of ∂ ∂f x/  and ∂ ∂f y/  at the
point  (x0, y0, z0)  denote the slope of the surface in
the x and y directions.

Higher-order Partial Derivatives:  15.3 p867  We denote
high-order partial derivatives by the order in which the
differentiation occurs.  For instance, the function
z = f(x, y) has the following second partial derivatives.

∂
∂

∂
∂

∂
∂x

f

x

f

x
f xx







= =
2

2 1. Differentiate twice with
respect to x.

∂
∂

∂
∂

∂
∂y

f

y

f

y
f yy







 = =

2

2 2. Differentiate twice with
respect to y.
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3. Differentiate first with
respect to x and then
with respect to y.
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4. Differentiate first with
respect to y and then
with respect to x.

Equality of Mixed Partial Derivatives:  15.3 p868  If f is a
function of x and y such that  f, fx, fy, fxy, and fyx  are

continuous on an open region R, then for every (x, y)
in R,

f x y f x yxy yx( , ) ( , )=

Knowledge of Partial Derivatives is important for
students who will be taking Differential Equations.

Increments:  For the function z = f(x, y), ∆x  and ∆y  are
the increments of x and y.  The increments of z is
given by

∆ ∆ ∆z f x x y y f x y= + + −( , ) ( , )

Total Differential:  15.4 p871  If z = f(x, y) and ∆x  and ∆y

are increments of x and y, then the differentials of
the independent variables x and y are

dx x= ∆      and     dy y= ∆

and the total differential of the dependent variable z
is
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Differentiability:  15.4 p872  A function f given by z = f(x, y)
is differentiable at (x0, y0) if ∆z  can be expressed in
the form
∆ ∆ ∆ ∆ ∆z f x y x f x y y x yx y= + + +( , ) ( , )0 0 0 0 1 2ε ε

where both ε1
 and ε 2 0→  as ( , ) ( , )∆ ∆x y → 0 0 .  The

function  f  is said to be differentiable in a region R
if it is differentiable at each point of R.

Sufficient condition for differentiability:  15.4 p873  If f is a
function of x and y, where f, fx, and fy are continuous
in an open region R, then f is differentiable on R.

Differentiability implies continuity:  15.4 p876  If a function of
x and y is differentiable at (x0, y0), then it is continuous
at (x0, y0).

Chain Rule:  one independent variable:  15.5 p879  Let
w = f(x, y), where f is a differentiable function of x and
y.  If x = g(t) and y = h(t), where g and h are
differentiable functions of t, then w is a differentiable
function of t, and
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Chain Rule:  two independent variables:  15.5 p882  Let
w = f(x, y), where f  is a differentiable function of x and
y.  If x = g(s, t) and y = h(s, t) such that the first partials
∂ ∂x s/ , ∂ ∂x t/ , ∂ ∂y s/ , and ∂ ∂y t/  all exist, then
∂ ∂w s/  and ∂ ∂w t/  exist and are given by
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Chain Rule:  implicit differentiation:  15.5 p884  If the
equation f(x, y) = 0 defines y implicitly as a
differentiable function of x, then
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If the equation F(x, y, z) = 0 defines z implicitly as a
differentiable function of x and y, then
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Directional Derivative:  15.6 p888  Let f be a function of two
variables x and y and let vu = +cos sinθ θi j  be a unit

vector.  Then the directional derivative of f in the
direction of u, denoted by Duf is
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If f is a differentiable function of x and y, then the
directional derivative of f in the direction of the unit
vector vu = +cos sinθ θi j  is

D f x y f x y f x yu x y( , ) ( , )cos ( , )sin= +θ θ

An alternate form of the directional derivative is:
D f x y f x y uu ( , ) ( , )= ∇ ⋅

Gradient of a function of two variables:  15.6 p890  If
z = f(x, y), then the gradient of f, denoted by
∇f x y( , ) , is the vector

∇ = +f x y f x y f x yx y( , ) ( , ) ( , )i j

We read ∇f  as "del f".  Another notation for the
gradient is grad f(x, y).

Properties of the gradient:  15.6 p892  Let f be differentiable
at the point (x, y).

1. If ∇ =f x y( , ) 0 ,  then D f x yu ( , ) = 0  for all u.
2. The direction of maximum increase of f is given by

∇f x y( , ) .  The maximum value of D f x yu ( , ) is

∇f x y( , ) .

3. The direction of minimum increase of f is given by
− ∇f x y( , ) .  The minimum value of D f x yu ( , ) is

− ∇f x y( , ) .

To visualize one of the properties of the gradient,
imagine a skier coming down a mountainside.  If
f(x, y) denotes the altitude of the skier, then
− ∇f x y( , )  indicates the compass direction the skier
should take to ski the path of steepest descent.  The
gradient indicates direction in the xy plane and does
not itself point up or down the mountainside.

Gradient is normal to level curves:  15.6 p894  If f is
differentiable at (x0, y0), and ∇ ≠f x y( , )0 0 0 , then
∇f x y( , )0 0  is normal to the level curve through
(x0, y0).

Directional Derivative and Gradient for a function of
three variables:  15.6 p895  Let f be a function of x, y, and
z, with continuous first partial derivatives.  The
directional derivative of f in the direction of a unit
vector u i j k= + +a b c  is given by
D f x y z af x y z bf x y z cf x y zu x y z( , , ) ( , , ) ( , , ) ( , , )= + +

The gradient of f is defined to be
∇ = + +f x y z f x y z f x y z f x y zx y z( , , ) ( , , ) ( , , ) ( , , )i j k

Tangent Plane and Normal Line:  15.7 p898  Let F be
differentiable at the point P = (x0, y0, z0) on the surface
S given by F(x, y, z) = 0 such that ∇ ≠F x y z( , , )0 0 0 0 .

1. The plane through P that is normal to ∇F x y z( , , )0 0 0

is called the tangent plane to S at P.
2. The line through P having the direction of

∇F x y z( , , )0 0 0  is called the normal line to S at P.

Equation of Tangent Plane:  15.7 p899  If F is differentiable
at (x0, y0, z0), then an equation of the tangent plane to
the surface given by F(x, y, z) = 0 at (x0, y0, z0) is
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Angle of inclination of a plane:  15.7 p 902
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Gradient is Normal to level surfaces:  15.7 p904  If F is
differentiable at (x0, y0, z0) and ∇ ≠F x y z( , , )0 0 0 0 ,
then ∇F x y z( , , )0 0 0  is normal to the level surface
through (x0, y0, z0).

Extreme Value Theorem:  15.8 p906  Let f be a continuous
function of two variables x and y defined on a closed
bounded region R in the xy-plane.

1. There is at least one point in R where f takes on a
minimum value.

2. There is at least one point in R where f takes on a
maximum value.

Relative Extrema:  15.8 p906  Let f be a function defined on
a region R containing (x0, y0).

1. f(x0, y0) is a relative minimum of f if
f x y f x y( , ) ( , )≥ 0 0  for all (x, y) in an open disc
containing (x0, y0).

2. f(x0, y0) is a relative maximum of f if
f x y f x y( , ) ( , )≤ 0 0  for all (x, y) in an open disc
containing (x0, y0).

Critical Point:  15.8 p906  Let f be defined on an open region
R containing (x0, y0).  We call (x0, y0) a critical point
of f if one of the following is true.

Relative extrema occur only at Critical Points:  15.8 p907  If
f(x0, y0) is a relative extremum of f  on an open region
R, then (x0, y0) is a critical point of f.

Second-Partials Test for relative extrema:  15.8 p909  Let
f have continuous first and second partial derivatives
on an open region containing a point (a, b) for which
fx(a, b) = 0 and fy(a, b) = 0.  To test for relative
extrema of f, we define the quantity

d f a b f a b f a bxx yy xy= −( , ) ( , ) [ ( , )]2

1. If d > 0 and fxx(a, b) > 0, then f(a, b) is a relative
minimum.

2. If d > 0 and fxx(a, b) < 0, then f(a, b) is a relative
maximum.

3. If d < 0, then (a, b, f(a, b)) is a saddle point.
4. The test gives no information if d = 0.

Least squares regression line:  15.9 p916  The least squares
regression line for {(x1, y1), (x2, y2), . . . , (xn, yn)} is
given by f(x) = ax + b, where
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Lagrange's Theorem:  Let f and g have continuous first
partial derivatives such that f has an extremum at a
point (x0, y0) on the smooth constraint curve
g(x, y) = c.  If ∇ ≠g x y( , )0 0 0 , then there is a real
number λ  (lambda) such that

∇ =f x y g x y( , ) ( , )0 0 0 0λ∇

Method of Lagrange multipliers:  15.10 p921  Let f and g
satisfy the hypothesis of Lagrange's Theorem, and let
f have a minimum or maximum subject to the
constraint g(x, y) = c.  The method may be used for
functions of multiple variables.  To find the minimum
or maximum of f, use the following steps.

1. Simultaneously solve the equations g x y c( , ) =  and
∇ = ∇f x y g x y( , ) ( , )λ  by solving the following system
of equations.

f x y g x yx x( , ) ( , )= λ     (solve for lambda)
f x y g x yy y( , ) ( , )= λ     (solve for lambda)

Set the two equal to each other and solve for
variables.

g x y c( , ) =     (substitute in variables)

Substitute the results into the original equation.

2. Evaluate f at each solution point obtained in the first
step and at each endpoint (if any) of the constraint
curve.  The largest value yields the maximum of f
subject to the constraint g(x, y) = c, and the smallest
value yields the minimum of f subject to the constraint
g(x, y) = c.
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