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TWO-PORT CIRCUITS 

VV 11
I circuit

network
2I 2

 

V z I z I1 11 1 22 2= +  

V z I z I2 21 1 22 2= +  

V z I z I1 12 2 11 1= + ? 

z
y

=
1

 

 

I y V y V1 11 1 22 2= +  

I y V y V2 21 1 22 2= +  

I y V y V2 12 2 11 1= + ? 

V h I h V1 11 1 22 2= +  

I h I h V2 21 1 22 2= +  

I h I h V1 12 2 11 1= + ? 
To calculate the z parameters in a resistive network the 
equations above are manipulated to the following form, 
where one of the currents is held to zero.  Various 
manipulations are carried out to find values for the V and I 
quantities using the known values of the resistors. 
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h parameters are used for transistor specifications 
y parameters may be easier to find than z parameters 

and may be added when networks are paralleled. 
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RMS 
rms stands for root mean square.  To obtain the rms 
value of a periodic function, first square the function, 
then take the mean value, and finally the square root. 

rms by definition: ( )X
T

f x dtrms

T
= ∫

1 2

0
( )  

rms value of AC voltage: V
V

rms = max

2
 

  root

2〈    〉p

mean square  

 
( ) ( )2

rms
f t f t=  

The plot below shows a sine wave and its rms value, along 
with the intermediate steps of squaring the sine function 
and taking the mean value of the square.  Notice that for 
this type of function, the mean value of the square is ½ the 
peak value of the square. 
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Op Amps 

 
INVERTING AMPLIFIER 
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THÈVENIN AND NORTON EQUIVALENTS 
A one-port network (circuit presenting 2 external terminals) 

may be represented by either a Thèvenin or Norton 
equivalent.  Note that REQ has the same value in both the 
Thèvenin and Norton equivalents. 

THÈVENIN EQUIVALENT 

+V -TH

REQ

 

NORTON EQUIVALENT 
 

RI EQN

 

1) Find the Thèvenin voltage (the open-circuit voltage) or the 
Norton current (the short-circuit current). 

2) To find Req, first “Turn off” the independent sources, i.e. 
voltage sources go to zero which means they are shorted 
and current sources also go to zero which means they are 
opened.  Calculate the equivalent resistance of the circuit.  
This is Req. 

3) If there are no independent sources (dependent sources 
may be present) then VTH = IN = 0 and the circuit reduces 
to an equivalent resistance. 

4) If there are independent and dependent sources, turn off 
the independent sources and apply a test source (VTEST = 1 
or ITEST = 1) to the port.  Calculate the unknown parameter 
VTEST or ITEST at the port and find REQ using 

EQTESTTEST RIV =  

THÈVENIN/NORTON EXAMPLE 
 

Given this circuit: 
R+

- v Ω12 4

Ω4

L

 

 
The Thèvenin voltage is 
the open circuit voltage, 
i.e. with the load 
disconnected. 

= 6

+
- v Ω12 4

Ω
THV

4
v

 

The Thèvenin resistance is 
the equivalent resistance 
with the independent voltage 
source shorted and the load 
disconnected. 

= 2

Ω4

Ω R4 EQ Ω

 

 

The Thèvenin equivalent 
circuit can now be written 
as: 

+
- v6 RL

Ω2

 

V I RTH N TH=  

And the Norton equivalent 
can be written as: 

a3 Ω2 RL

 

LC CIRCUITS 
 

v
+

-
RL

 
 

Energy (joules):  w Li= 1
2

2  

  also:  w LI eo
t= − −1

2
2 21( )/τ  

Time Constant:  τ = L R/  

Voltage:  v t LL
di
dt( ) =  

Current: I t
L

v d IL

t

o( ) = +∫
1

0
τ  

 
 

v
+

-
C R

 

Power: 
P Cv dv

dt=  

Energy (joules):  w Ce= 1
2

2  

  also:  w CV eo
t= − −1

2
2 21( )/τ  

Time Constant:  τ = RC  

Voltage: V t
C

i d Vc

t

o( ) = +∫
1

0
τ  

Current:  i t Cc
dv
dt( ) =  

 

C L

 

LC Tank Circuit 

Resonant frequency: 
1

2
f

LCπ
=  

 

Equations Common to L & C Circuits 

 Current:  i t I I I ef o f
t( ) ( ) /= + − − τ  

 Voltage:  v t V V V ef o f
t( ) ( ) /= + − − τ  

 Power:  p I R eo
t= −2 2 /τ  

where I0 is initial current [A] 
 If is final current [A] 
 t is time [s] 
 τ is the time constant; τ = RC for capacitive circuits, 

τ = R/L for inductive circuits [s] 
 V0 is initial voltage [V] 
 Vf is final voltage [V] 
 p is power [W] 
 R is resistance [Ω] 
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RLC CIRCUITS -- Parallel 

Sum of node currents in a Parallel RLC circuit: 

C
v
R L

v d Idv
dt

t

o+ + + =∫
1

0
0

τ  

which differentiates to: 

C
R L

vd v
dt

dv
dt

2

2

1 1
0+ + =  

 

RLC CIRCUITS -- Series 

Sum of voltages in a Series RLC circuit: 

L Ri
C

i d Vdi
dt

t

o+ + + =∫
1

0
0

τ  

which differentiates to: 

L R
C

id i
dt

di
dt

2

2

1
0+ + =  

  

 
dx
dt

j⇔ ω X  
d x
dt

j
2

2
2⇔ ( )ω X  

 
RLC CIRCUITS – solving second order equations 

α  the Neper frequency (damping coefficient) [rad/s]: 

Parallel 
circuits: 
 

α =
1

2RC
  Series 

circuits: α =
R
L2

 

ω  the Resonant frequency  [rad/s]: 

ω o
LC

=
1    

 

ω ω αd o= −2 2  
used in 
underdampe
d calculations 

s1 , s2  the roots of the characteristic equation  [rad/s]: 

s o1
2 2= − + −α α ω  

 
s o2

2 2= − − −α α ω  

 

Overdamped  α2 > ω2   (real and distinct roots) 

X t X A e A ef
s t s t( ) ' '= + +1 2
1 2  

X X A Af( ) ' '0 1 2= + +   dx
dt s A s A( ) ' '0 1 1 2 2= +  

Underdamped  α2 < ω2   (complex roots) 

X t X B e t B e tf
t

d
t

d( ) ' cos ' sin= + +− −
1 2

α αω ω  

X X Bf( ) '0 1= +   dx
dt dB w B( ) ' '0 1 2= − +α  

Critically Damped  α2 = ω2   (repeated roots) 

X t X D te D ef
t t( ) ' '= + +− −

1 2
α α

 

X X Df( ) '0 2= +   dx
dt D D( ) ' '0 1 2= −α  

 

Some Trig Identities 

A t B t A B
B

A
cos sin cos cot tanω ω+ = + +

−















2 2  

c jj± = ±θ θ θcos sin    Euler identity 

sin cos( )ω ωt t= − °90  

  

In an overdamped circuit, α2 > ω2 and the voltage or current 
approaches its final value without oscillation. 

In an underdamped circuit, α2 < ω2 and the voltage or current 
oscillates about its final value. 

In a critically damped circuit, α2 = ω2 and the voltage or 
current is on the verge of oscillating about its final value. 

When an expression is integrated, it may be necessary to add 
in initial values for the constant of integration even if they 
have been taken into account within other terms. 

Natural response is the behavior of a circuit without external 
sources of excitation. 

Step response is the behavior of a circuit with an external 
source. 

A node is a point where two or more circuit elements join. 
An essential node is a node where three or more circuit 

elements join. 
A path is a trace of adjoining basic elements with no elements 

included more than once. 
A branch is a path that connects two nodes. 
An essential branch is a path which connects two essential 

nodes without passing through an essential node. 
A loop is a path whose last node is the same as the starting 

node. 
A mesh is a loop that does not enclose any other loops. 

SINUSOIDAL ANALYSIS 
 π × = ×degrees radians180  

 ω π= =2 360f f[rad / s] [deg / s]  

 resonant frequency  ωo LC
=

1
 

 v t V tm( ) cos( )= +ω φ  i t I tm( ) cos( )= +ω φ  
 where Vm and Im are maximums 

 equivalent of two parallel impedances  =
product

sum
 

Phasor Transform: V = = +V e V tm
j

m
φ ω φP{ cos( )}  

v t A t A( ) cos( )= + ° ⇔ ∠φ°ω φ  

sin cos( )ω ωt t= − °90  

Inverse Phasor Transform }{}{1 tjj
m

j
m eeVeV ωφφ− = RP  

A smaller φ causes a right shift of the sinusoidal graph. 
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SINUSOIDAL ANALYSIS 

Element: Resistor Capacitor Inductor 

Impedance (Z): R (resistance) − j C/ ω  j Lω  

Reactance (X) -- −1/ ω C  ω L  

Admittance (Y): G (conductance) j Cω  1/ j Lω  

Susceptance: -- ω C  −1 / ω L  

Voltage: I R  I / j Cω  

( / ) ( )I Cm Vω θ∠ − °90  
j Lω I  

ω θL Im V∠ + °( )90  

Amperage: V / R  j Cω V  

( / ) ( )V Cm Vω θ∠ + °90  

V / j Lω  

( / ) ( )V Lm Vω θ∠ − °90  

 
 

PHASOR and RECTANGULAR NOTATION 
The phasor is a complex number that carries the 

amplitude and phase angle information of a sinusoidal 
function.  The Phasor concept is rooted in Euler’s 
identity, which relates the exponential function to the 
trigonometric function: 

j cos jsine± θ = θ ± θ  

The use of phasor notation may be referred to as 
working in the phasor domain or the frequency 
domain.  Note that the phasor notation M∠φ is 
equivalent to Mejφ , where φ is in radians.

 

Rectangular Notation:  X jY±  where X represents the 
horizontal or real coordinate 
and Y  the vertical or 
imaginary coordinate.  Use 
this form for addition and 
subtraction by separately 
adding and subtracting the 
real and imaginary 
components.  Be careful with 
the sign of the j term: 

 
( ) ( ) ( ) [ ( )]A jB C jD A C j B D+ + − = + + + −  

Phasor Notation: M ∠φ° , where M is the magnitude of the 
phasor and f is the angle CCW from the X axis.  Use this 
form for multiplication and division. 

 ( )( ) ( )E F EF∠θ ∠φ = ∠ +θ φ  E
F

E
F

∠θ
∠φ

= ∠ −( )θ φ  

 A negative magnitude may be converted to positive by 
adding or subtracting 180° from the angle. 

To convert from rectangular to phasor notation: 

 Rectangular form:  X jY±  

 Magnitude: M X Y= +2 2  

Angle φ: tan φ =
Y
X

 
(Caution:  The Y will be 
negative is the j value is being 
subtracted from the real.) 

Note:  Due to the way the calculator works, if X is negative, you 
must add 180° after taking the inverse tangent.  If the result 
is greater than 180°, you may optionally subtract 360° to 
obtain the value closest to the reference angle. 

To convert from phasor to rectangular (j) notation: 
 Phasor form: M ∠φ°  
 X (real) Value: M cos φ  

 Y (j or imaginary) Value: M sin φ  
In conversions, the j value will have the same sign as the θ 

value for angles having a magnitude < 180°. 
 

Phasor impedance 
diagram for series 
circuits, where +j is 
inductive and -j is 
capacitive: 

XC

XL

I

R

 

Phasor voltage 
diagram for series 
circuits, where +j is 
inductive and -j is 
capacitive: 

VL

CV

I

RV

 

Phasor amperage 
diagram for parallel 
circuits, where +j is 
capacitive and -j is 
inductive: 

V

IL

I

R

C

I

 
 

θ
X

M
Magnitude

Y
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POWER 
Average Power or real power (watts) 

P
V Im m

v i= −
2

cos( )θ θ  

    = −V Irms rms v icos( )θ θ  

Positive P means the load is 
absorbing average power, 
negative means delivering 
or generating. 

Reactive Power (VARS) 

Q
V Im m

v i= −
2

sin( )θ θ  

    = −V Irms rms v isin( )θ θ  

Positive Q means the load is 
absorbing magnetizing 
vars (inductive), negative 
means delivering 
(capacitive). 

Complex Power (VA) 
S = +P jQ  

   = −V Irms rms v i( )θ θ  
* means "the complex 

conjugate of" 

= = =V I V I
V
Zrms rms

rms
* *

*max max

1
2

2

 

Power Factor (ratio of true power to apparent power) 
pf

v i

=
−cos( )θ θ

 Lagging: Inductive, current lags (-j), +Q 
Leading: Capacitive, current leads (+j), -Q 

Power and Impedance triangles 

True or Average Power [watts]

P

Apparen
t Power [

VA]

Phase
Angle

S

θ
Reactive
power in
[VARS]

Q

 

Impedance [
ohms]

Resistance [ohms]

Phase
Angle

R

Reactance
[ohms]

Z X

θ

 

θ = −cos 1 pf   The power triangle is geometrically identical 

to the impedance triangle. 

Maximum Power Transfer  

Maximum power transfer occurs when the 
load impedance is equal to the complex 
conjugate of the source impedance.  Under 
these conditions, the maximum value of 
average power absorbed is   

P
V

R
TH

L
max =

2

4
 

 

 

3-PHASE POWER 
Phase and line voltage relationships in a Wye Circuit 

(positive sequence - clockwise) 

Z

Z

Z

N
B

A

C

+

+

ABV

VBC
-

-

+ -VAN

 
V VAB AN= 3    or 

V VAB AN= × ∠ °3 1 30( )  

30°

ABV

VAN

V

V

V

V

BC

BN

CA

CN

 

Phase and line current relationships in a Delta Circuit 
(positive sequence - clockwise) 

B
Z

C

ICA

A

Z ZABI

IBC

IaA

IbB

cCI
 

I IaA AB= 3  IBC

IbB

IaA

30°
IAB

ICA

IcC

 

Wye-Delta Transform (for balanced circuits only) 

Z
Z

Y
D=

3
 

V Vline to line an− − = 3  

I
V
ZaA

an=
φ

 

Single-phase Equivalent 
Circuit: 

an

IaA

VAN

-

+

N

A

V

-

+

-

n

+

a

 

Motor Ratings  

P V I
hp

L L v i= − =
×

3
746

cos( )θ θ
efficiency

          where: 

P  is the power input in watts 
cos( )θ θv i−  is the power factor 

efficiency  is expressed as a decimal value 

Power Factor Correction  

Q
x C

= =
= −

VARS
3 c

( / )
/

460 3
1

2

ω
                   where: 

VARS  is a negative value for the amount of correction 
460 is the line voltage 
C  is the value of the capacitor in Farads 
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TRANSFORMERS 
Ideal Transformer 

+- V

ZS

1VS
ZLV

1 : a

2

 

Z
a a

ZIN L= = =
V
I

V
I

1

1
2

2

2
2

1 1
 

a
N
N

= 1

2

 

V
V

1
2=

a
 

I I1 2= a  

ZIN is the load seen by the source. 

Transformer Turns Ratio 

V VN N1

I1

1 2 2

I2

 

V
N

V
N

1

1

2

2

=     N N1 1 2 2I I=  

Moving a dot results in a 
negative sign on one side of 
each equation. 

Magnetically Coupled Coils 

L L1 2

MV1

I1

V2

2I

 

V L
di
dt

M
di
dt1 1

1 2= +  

V L
di
dt

M
di
dt2 2

2 1= +  

M k L L= 1 2  where k is 

the coefficient of coupling 

T Equivalent Circuit 

-M-ML1

M

L2

 

This circuit is equivalent to the 
magnetically coupled coils 
above.  We are not concerned 
about the orientation of the dots. 

Mesh Current Equations involving mutual inductors 

A mesh is a loop that does not enclose other loops in the 
circuit. 

1.  Draw current loops emanating from positive voltage 
sources if present and label I1, I2, I3, etc. for each interior 
path of the circuit. 

2.  For each loop form an equation in the form:  Voltage or 0 
if there is no source in the loop = R1 × (sum of amperages 

passing through R1) + L1
d
dt  × (sum of amperages 

passing through L1) + . . .  

3.  Amperages are positive in the direction of loops 
regardless of the location of dots on inductors in the loop.  
However, the sign of an amperage through a mutual 
inductor is positive iff it enters the mutual inductor at the 
same end (i.e. dotted or undotted) at which the reference 
current loop enters the reference inductor. 

 

 
 


