THE LAPLACE TRANSFORM

Fundamentals of the Laplace Transform >

z

THE LAPLACE TRANSFORM
The Laplace transform of afunction f(t) is expressed symbolically as F(s), where sis acompl@<
value.

SIF()] =F(s) = (5 f(t)e dat

&)

The formula shown is called the unilateral or one-sided Laplace transform because the integration
takes place over the interval from O to ¥ ; the bilateral or two-sided transform integrates from -¥
to¥.

THE INVERSE LAPLACE TRANSFORM

1 ctij¥
f)=—@ F(9)e’ds
(t) ijQj¥ (s)

where c isthe abscissa of conver gence (defined later). The text says the use of thisformulaistoo
complicated for the scope of the book. <

In my Differential Equations class, we had a substitute teacher one day that gave us this formula
for the Inverse Laplace Transform. Normally you get the inverse Laplace transform frorh tables
but thisis away to calculate. | don't know how it works but thought | would save it. He said that
this and some other things that aren't found in current math textbooks are found in a 1935 book by
Widder caled "Advanced Calculus' which he recommends for engineers.
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USING THE LAPLACE TRANSFORM
When finding the Laplace transform of a function, the result of THE COMPLEX PLANE
performing the integration may contain aterm such ase®*?", |t j
should be noted that ast® ¥, this term does not necessarily go to

infinity as well because of the complex variable s. ®
Iime_(s+a)t:‘%0,whenthereal partof s+a>0{ )
®¥ 1¥,when theredl part of s+a<0¥, Roal oS o —~
The solution concerns only the part of the complex plane where CORVERGENCE
the real part of s+ ain this example is greater than zero and this
areais caled the region of convergence. It issaid to consist of %

theright half-plane of the complex plane bounded by the
abscissa of convergence, ¢, which in this caseis equal to the real part of s minusthe variable a.
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TIME-DERIVATIVES OF THE LAPLACE TRANSFORM

The First Derivative: F¢s)=sF(s)- f(0)
—
initial condition
The Second Derivative: Fd&s) =s°F(s)- sf(0)- f¢0)
initial conditions

TIME-SHIFTING THE LAPLACE TRANSFORM
This formula represents a time-shift to the right (to is positive).

f(t- )0 F(s)e ™ AE(- )] = F(t- t)e%e et t,3 0

Delaying asignal by t, seconds is equivalent to multiplying itstransform by € . Thetime-
shifting property is useful in finding the Laplace transform of piecewise continuous functions.

TIME-DOMAIN SOLUTIONS USING THE LAPLACE TRANSFORM
By taking the Laplace transform of an equation describing alinear time-invariant continuous-time
(LTIC) system it is possible to simplify an equation of derivatives into an algebraic expression.
The following substitutions are made:

LTIC SYSTEM EQUATION

Y(s) U y(t), the zero-state response

F(s) U f(t), theinput function [ output [ input
H(s) U P(t)/Q(t), or the ratio of Y(s)/F(s) when all
initial conditions are zero. The poles of H(s)
arethe characteristic roots of the system. (D) y(t) = P(D) f(t)
H(s) is aso the Laplace transform of the unit iy sl
impulse response h(t).

H(s) = § hie e " %“%3%@:3&3{;“
characteristic operator.
equation, modes

The transform of the equation is reduced to simplest form ggﬁ\jggfs are
and then the inverse transform is taken using the table of

Laplace transforms.
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A TABLE OF LAPLACE TRANSFORMS

f(t) F(s)
1 d(t) 1
2 u(t) 1
S
3 tu(t) iz
S
|
4 tu(t) i
S
5 &) 1
s- |
1
6 te' 'u(t
®) (s-1)2
n!
7 t"etu(t e
( ) (S' I )n+l
8a cosbt u(t) S
SZ + b2
8b snbtu(t) _b
SZ + b2
% e * cosbt u(t) __sra
(s+a)® +b?
% e *snbtu(t) b
(s+a)® +b?

(rcosq)s+ (ar cosq- brsnaq)
s* +2as+ (a® + b%)

0.5re . 05re Ja

s+a- jb s+a+jb

10a  re ® cos(bt +q) u(t)

100 re ® cos(bt +q) u(t)

As+ B
10c re ® cos(bt + q) u(t _
(bt + ) u(t) a5 40
_ |A’c+B?- 2ABa ... Aa-B b=+c- a2
A T Sra. e
Y - Aa . u As+ B
10d e * ZAcosht + snbt u(t _ b=+c- a?
g b H ® s’ +2as+c
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A TABLE OF LAPLACE TRANSFORM OPERATIONS

Time shift

Frequency shift

Frequency differentiation

Freguency integration

Scaling
Time convolution
Frequency convolution

Initial value

Fina value

f(t- to)u(t-t,)
f(t)e™

-t (1)

f(t)

t
f(at), a3 0
f,(t)* f,(t)
f,(t) f,(t)
f (0)
f(¥)

Operation f(t) F(9)

Addition f, (t) + f,(t) F.(s) + F,(9)

Scalar multiplication kf (t) kF(s)

Time differentiation % sF(s)- f(0)
d*f )
e S°F(s)- sf(0)- f¢0)
d®f 3 2
pre S’F(s)- s“f(0)- f €0)- f &0)

Time Integration éf (t)dt é F(s)
N 1 10
Qf(t)dt gF(s)+ng(t)dt

F(s)e %,

F(s- )
dF(s)
ds

F(9)ds

t,% 0

F (S)F,(9)

1 *
20 F.(s)* F,(s)
i (9

E@ng SF(S) (polesof sF(s) in LHP)
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