
PROOF OF A SOLUTION
An example of the steps involved in proving that there is a solution

to a statement and determining what that solution is.
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Definition:  A solution is a function defined on ℜ+ that is differentiable for  t > 0  which satisfies the
problem statement.

Problem:  Prove that there is a solution x for  ′ + = ≥x t ax t f t t( ) ( ) ( ), 0   and determine the

solution.

Solution:

1. Assume that f is continuous.

2. Suppose that there exists a solution x.  Then it
can be written in this way because e-at can
never be zero and we haven't yet defined q(t).

x t q t e at( ) ( )= − (eq.  2)

3. Substitute q(t)e-at for x(t) in the problem
statement.

Then simplify:

And rewrite:
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′ =−q t e f tat( ) ( )
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4. Integrate from 0 to t.

Then simplify:

And rewrite, letting q(0) = c:
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5. So if there is a solution x, we must have:

with:

x t q t e at( ) ( )= −

q t e f d ca
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(eq.  2)

(eq. 4c)

6. Substituting q(t) as given in (eq. 4c) into the
equation (eq.  2) we have:

If there is a solution x, then the solution is:
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(eq. 6a)
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7. Setting  t = 0  we see that  c = x(0). x ce( )0 00= +



8. So, taking (eq. 6a):

And differentiating:

This simplifies to:
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9. So from the problem
statement and
(eq. 6b) and (eq. 8b)
we have:
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10. This shows that given:

there is exactly one solution called x and x is
given by:

′ + = = ≥x t ax t f t x c t( ) ( ) ( ), ( ) ,0 0
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0 (eq. 6b)
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