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Computer Assignment 2

Chapter 2, section 1, problem 3

Matlab commands:

Apes = [70 50;30 60]
Diet = [25 40 20;15 30 25]
Result = Apes * Diet   

Matlab results:

Apes =
    70    50
    30    60
Diet =
    25    40    20
    15    30    25
Result =
        2500        4300        2650
        1650        3000        2100   

The meaning of the calculation:
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Chapter 2, section 1, problem 10a

Matlab commands:

A = randint(3,4,5,2)
% RANDINT(m,n,k,r) is an m by n matrix of rank r
% with integer entries in the interval [-k:k].
% If less than three arguments are used the default
% value of k is taken to be 9.
% If only one input argument is used then it is assumed
% that the matrix is square.
% If the last argument is left off, no attempt is made
% to determine the rank.
rref(A)   

Matlab results:

A =
     0     3     0     3
    -3    -2     3     1
    -2     1     2     3
ans =
     1     0    -1    -1
     0     1     0     1
     0     0     0     0   
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x1 = [4;-2;2;2];
x2 = [5;-2;3;2];
a = 3; b = -2;
x3 = a * x1 + b * x2
Product1 = A*x1
Product2 = A*x2
Product3 = A*x3   

Matlab results:

x3 =
     2
    -2
     0
     2
Product1 =
     0
     0
     0
Product2 =
     0
     0
     0
Product3 =
     0
     0
     0   

x1 and x2 are two non-zero non-multiple solutions of Ax = 0.
Two values for a and b were selected at random and x3 was
formed by multiplying x1 by a and adding to the product of
x2 and b.  Then the products of A*x1, A*x2, and A*x3 were
all found to be zero confirming that x1, x2, and x3 are all
solutions of Ax = 0.

Therefore it appears that any sum of multiples of solutions of
a homogeneous linear system is also a solution of that
system.
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Chapter 2, section 1, problem 10b

Matlab commands:

p = randint(4,1,5)
% RANDINT(m,n,k,r) is an m by n matrix of rank r
% with integer entries in the interval [-k:k].
% If less than three arguments are used the default
% value of k is taken to be 9.
% If only one input argument is used then it is assumed
% that the matrix is square.
% If the last argument is left off, no attempt is made
% to determine the rank.
B = A*p
C = p + 3*x1 + (-2)*x2
B2 = A*C   

Matlab results:

p =
     4
     3
     0
    -5
B =
    -6
   -23
   -20
C =
     6
     1
     0
    -3
B2 =
    -6
   -23
   -20   

A random vector p is created and  B = A * p is computed so that p is a
solution of the nonhomogeneous system Ax = B.  Using values from
problem 10a, we compute p + a*x1 + b*x2 which is stored in C.

To check to see if C is also a solution of Ax = B, we compute
B2 = A * C.  It is found that B2 = B so therefore p + a*x1 + b*x2 is
also a solution of Ax = B.

Therefore it appears that any sum of multiples of solutions of a
nonhomogeneous linear system is also a solution of that system.
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Chapter 2, section 1, problem 14a

Matlab commands:

A = [3 2;4 3]
B = [3 -2;-4 3]
DeterminantA = det(A)
DeterminantB = det(B)
AB = A*B
BA = B*A
InverseA = inv(A)
InverseB = inv(B)

Matlab results:

A =
     3     2
     4     3
B =
     3    -2
    -4     3
DeterminantA =
     1
DeterminantB =
     1
AB =
     1     0
     0     1
BA =
     1     0
     0     1
InverseA =
     3    -2
    -4     3
InverseB =
     3     2
     4     3   

The definition of an inverse matrix states that "if the
transformation y = Ax is invertible, its inverse is x = A-1y."  It
follows that:

y = AA-1y and x = A-1Ax
y/y = AA-1 x/x = A-1A
1 = AA-1 1 = A-1A

and if A-1 = B then:
1 = AB and 1 = BA

Both A and B are nonsingular and therefore invertable since
their determinants are not equal to zero.  The product of A*B
and B*A both yield the identity matrix.  So it is seen that A is
the inverse matrix of B and that B is the inverse matrix of A.
This is further confirmed by using the Matlab command inv()
to find the inverse.
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Chapter 2, section 1, problem 14b

Matlab commands:

A = [1 0 1;1 1 0;-1 2 -2]
B = [-2 2 -1;2 -1 1;3 -2 1]
DeterminantA = det(A)
DeterminantB = det(B)
AB = A*B
BA = B*A
InverseA = inv(A)
InverseB = inv(B)   

Matlab results:

A =
     1     0     1
     1     1     0
    -1     2    -2
B =
    -2     2    -1
     2    -1     1
     3    -2     1
DeterminantA =
     1
DeterminantB =
     1
AB =
     1     0     0
     0     1     0
     0     0     1
BA =
     1     0     0
     0     1     0
     0     0     1
InverseA =
    -2     2    -1
     2    -1     1
     3    -2     1
InverseB =
    1.0000    0.0000    1.0000
    1.0000    1.0000         0
   -1.0000    2.0000   -2.0000   
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Chapter 2, section 1, problem 14c

Matlab commands:

A = [0 0 0 0 1;1 0 0 0 0;0 1 0 0 0;0 0 0 1 0;0 0 1 0 0]
B = [0 1 0 0 0;0 0 1 0 0;0 0 0 0 1;0 0 0 1 0;1 0 0 0 0]
DeterminantA = det(A)
DeterminantB = det(B)
AB = A*B
BA = B*A
InverseA = inv(A)
InverseB = inv(B)

Matlab results:

A =
     0     0     0     0     1
     1     0     0     0     0
     0     1     0     0     0
     0     0     0     1     0
     0     0     1     0     0
B =
     0     1     0     0     0
     0     0     1     0     0
     0     0     0     0     1
     0     0     0     1     0
     1     0     0     0     0
DeterminantA =
    -1
DeterminantB =
    -1
AB =
     1     0     0     0     0
     0     1     0     0     0
     0     0     1     0     0
     0     0     0     1     0
     0     0     0     0     1
BA =
     1     0     0     0     0
     0     1     0     0     0
     0     0     1     0     0
     0     0     0     1     0
     0     0     0     0     1
InverseA =
     0     1     0     0     0
     0     0     1     0     0
     0     0     0     0     1
     0     0     0     1     0
     1     0     0     0     0
InverseB =
     0     0     0     0     1
     1     0     0     0     0
     0     1     0     0     0
     0     0     0     1     0
     0     0     1     0     0   
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Chapter 2, section 1, problem 14d

Matlab commands:

A = [1 1 1;1 1 0]
B = [1 1;-1 0;1 -1]
AB = A*B
InverseA = inv(A)   

Matlab results:

A =
     1     1     1
     1     1     0
B =
     1     1
    -1     0
     1    -1
AB =
     1     0
     0     1
�??? Error using èè inv
Matrix must be square.   

Although A * B yields an identity matrix,  B is not
the inverse matrix of A because neither is a square
matrix.
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Chapter 2, section 1, problem 16a

Matlab commands:

A = [0.2 0.3 0.4;0.4 0.4 0.1;0.5 0.1 0.3]
I = [1 0 0;0 1 0;0 0 1]
IMinusA = I-A
Determinant = det(I-A)
Inverse = inv(I-A)   

Matlab results:

A =
    0.2000    0.3000    0.4000
    0.4000    0.4000    0.1000
    0.5000    0.1000    0.3000
I =
     1     0     0
     0     1     0
     0     0     1
IMinusA =
    0.8000   -0.3000   -0.4000
   -0.4000    0.6000   -0.1000
   -0.5000   -0.1000    0.7000
Determinant =
    0.0930
Inverse =
    4.4086    2.6882    2.9032
    3.5484    3.8710    2.5806
    3.6559    2.4731    3.8710   

Chapter 2, section 1, problem 16b

Matlab commands:

A = [4.5 0.3 0.4;0.4 0.4 0.1;0.5 0.1 0.3]
I = [1 0 0;0 1 0;0 0 1];
IMinusA = I-A
Determinant = det(I-A)
Inverse = inv(I-A)

Matlab results:

A =
    4.5000    0.3000    0.4000
    0.4000    0.4000    0.1000
    0.5000    0.1000    0.3000
IMinusA =
   -3.5000   -0.3000   -0.4000
   -0.4000    0.6000   -0.1000
   -0.5000   -0.1000    0.7000
Determinant =
   -1.6700
Inverse =
   -0.2455   -0.1497   -0.1617
   -0.1976    1.5868    0.1138
   -0.2036    0.1198    1.3293   

I - A is shown to be non-singular, (I - A)-1

exists and has all non-negative entries,
therefore p y= − −( )I A 1  exists and has all

non-negative entries.  This means that
( )I A− =p y  has a solution for every possible

demand vector y.

With the (1,1) entry of A having a value of 4.5,
A is no longer a realistic consumption matrix
because this would mean that the input would
be higher than the output.

As shown in Matlab, the determinant of I - A is
not non-negative.


