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PROPERTIES OF MATRICES 
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BASIC OPERATIONS - addition, subtraction, multiplication 

For example purposes, let   A =










a b

c d
   and   B =











e f

g h
   and   C =










i

j
 

then   A B+ =








 ±









 =

± ±

± ±











a b

c d

e f

g h

a e b f

c g d h
 

and   AB =

















 =

+ +

+ +











a b

c d

e f

g h

ae bg af bh

ce dg cf dh
 AC =

















 =

+

+











a b

c d

i

j

ai bj

ci dj
 

a scalar times a matrix is  3
3 3

3 3

a b

c d

a b

c d









 =









  

CRAMER'S RULE for solving simultaneous equations 

Given the equations: 

32 321 =++ xxx  

73 321 =−+ xxx  

1321 =++ xxx  

We express them in matrix form: 

















=

































−

1

7

3

111

131

112

3

2

1

x

x

x

 

Where matrix A is 

















−=

111

131

112

A
 

and vector y is 

















1

7

3
 

According to Cramer’s rule: 

1

3 1 1

7 3 1

1 1 1 8
2

4
x

A

−

= = =  

To find  x1 we replace the first 

column of A with vector y and 

divide the determinant of this new 

matrix by the determinant of A. 

2

2 3 1

1 7 1

1 1 1 4
1

4
x

A

−

= = =  

To find  x2 we replace the second 

column of A with vector y and divide 

the determinant of this new matrix 

by the determinant of A. 

3

2 1 3

1 3 7

1 1 1 8
2

4
x

A

−
= = = −  

To find  x3 we replace the third 

column of A with vector y and 

divide the determinant of this new 

matrix by the determinant of A. 
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THE DETERMINANT 

The determinant of a matrix is a scalar value that is used in many matrix operations.  The matrix must be 

square (equal number of columns and rows) to have a determinant.  The notation for absolute value is 

used to indicate "the determinant of", e.g. A  means "the determinant of matrix A" and a b

c d
 means to 

take the determinant of the enclosed matrix.  Methods for finding the determinant vary depending on the 

size of the matrix. 

 

The determinant of a 2×2 matrix is simply: 
where A =











a b

c d
,   det

a b
ad bc

c d
= = = −A A  

 

The determinant of a 3×3 matrix can be calculated by repeating 

the first two columns as shown in the figure at right.  Then add the 

products of each of three diagonal rows and subtract the products of 

the three crossing diagonals as shown. 

a a a a a a a a a

a a a a a a a a a

11 22 33 12 23 31 13 21 32

13 22 31 11 23 32 12 21 33

+ +

− − −
 

This method used for 3×3 matrices does not work for larger 

matrices. 

a

a

a

−−

a a11 12 13 a a11 12

−

31 a a32 33

21 a a22 23

a

a

31

21

+ + +

a32

a22

 

 

The determinant of a 4×4 matrix can be calculated by finding the 

determinants of a group of submatrices.  Given the matrix D we select any row 

or column.  Selecting row 1 of this matrix will simplify the process because it 

contains a zero.  The first element of row one is occupied by the number 1 

which belongs to row 1, column 1.   

Mentally blocking out this row and column, we take the determinant of the 

remaining 3x3 matrix d1.  Using the method above, we find the determinant of 

d1 to be 14. 

Proceeding to the second element of row 1, we find the value 3 occupying row 

1, column 2.  Mentally blocking out row 1 and column 2, we form a 3x3 matrix 

with the remaining elements d2.  The determinant of this matrix is 6. 

Similarly we find the submatrices associated with the third and fourth elements 

of row 1.  The determinant of d3 is -34.  It won't be necessary to find the 

determinant of d4. 

Now we alternately add and subtract the products of the row elements and their 

cofactors (determinants of the submatrices we found), beginning with adding 

the first row element multiplied by the determinant d1 like this: 

( ) ( ) ( ) ( )

( )

1 2 3 4det 1 det 3 det 2 det 0 det

14 18 68 0 72

= × − × + × − ×

= − + − − = −

D d d d d
 

The products formed from row or column elements will be added or subtracted 

depending on the position of the elements in the matrix.  The upper-left element 

will always be added with added/subtracted elements occupying the matrix in a 

checkerboard pattern from there.  As you can see, we didn't need to calculate d4 

because it got multiplied by the zero in row 1, column 4. 

1 3 2 0

4 4 1 1

2 0 1 3

3 3 1 5

 
 
 =
 
 
 

D  

1

4 1 1

0 1 3

3 1 5

 
 

=  
  

d  

2

4 1 1

2 1 3

3 1 5

 
 

=  
  

d  

3

4 4 1

2 0 3

3 3 5

 
 

=  
  

d  

4

4 4 1

2 0 1

3 3 1

 
 

=  
  

d  

Adding or 

subtract-

ing matrix 

elements: 

+ − + 
 
− + − 
 + − + 
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AUGMENTED MATRIX 

A set of equations sharing the same variables may be 

written as an augmented matrix as shown at right. 

y z

x y z

x y z

+ =

+ + =

+ + =

3 5

2 2 11

3 2 13

 

1

2

13

0

2

2 13

3 5

1 11

 

REDUCED ROW ECHELON FORM  (rref) 

Reducing a matrix to reduced row echelon form or rref is a means of solving 

the equations.  In this process, three types of row operations my be performed.  

1) Each element of a row may be multiplied or divided by a number, 2) Two 

rows may exchange positions, 3) a multiple of one row may be 

added/subtracted to another. 

1

2

13

0

2

2 13

3 5

1 11

 

 

1) We begin by 

swapping rows 

1 and 2. 1

1

2

3

0

2

2 13

3 5

1 11

 

2) Then divide 

row 1 by 2. 
3

0

1

1

1

2

3

0

2

2 13

3 5

1 11 ÷2

=
1 2 13

5.5

1 3

1 .5

5

 
 

3) Then subtract 

row 2 from 

row 1. 3

0

1

1 2 13

5.5

1 3

1 .5

5

-II

 

4) And subtract 

3 times row 1 

from row 3. 

0

1

01

1

0

3

0

1

2 13

3 5

-2.5 .5

=
-3(I) 11.51

1 3

9.5

0 -2.5

5

.5

 
 

5) Then subtract 

row 2 from 

row 3. 

0

1

0 11.51

1 3

9.5

0 -2.5

5

-II

.5

 

6) And divide 

row 3 by 6.5. 0

1

0

1 3

0 -2.5

5

.5

0 6.5 6.5 ÷ 6.5

0

1

0

= 1 3

0 -2.5

5

.5

0 1 1  
 

7) Add 2.5× 

row 3 to 

row 1. 

0

1

0

1 3

0 -2.5

5

.5

0 1 1

+2.5(III)

 

8) And subtract 

3× row 3 

from row 2. 

0

1

0

= 1

0

0 1 1

0 3

0 2

0

0

1

1

5

3

0 1

1 3

0 0

-3(III)

 
 

The matrix is now in reduced row echelon form and if we rewrite 

the equations with these new values we have the solutions.  A matrix 

is in rref when the first nonzero element of a row is 1, all other 

elements of a column containing a leading 1 are zero, and rows are 

ordered progressively with the top row having the leftmost leading 

1.   

x

y

z

=

=

=

3

2

1

 
0

1

0

1

0

0 1 1

0 3

0 2

 

 

When a matrix is in reduced row echelon form, it is possible to tell how may solutions there are to the 

system of equations.  The possibilities are 1) no solutions - the last element in a row is non-zero and the 

remaining elements are zero; this effectively says that zero is equal to a non-zero value, an impossibility, 

2) infinite solutions - a non-zero value other than the leading 1 occurs in a row, and 3) one solution - the 

only remaining option, such as in the example above. 

 

If an invertible matrix  A  has been reduced to rref form then its determinant can be found by 

1 2det( ) ( 1)s

rk k k= − ⋅⋅⋅A ,  where s is the number of row swaps performed and  k1, k2, · · ·  kr  are the scalars 

by which rows have been divided. 

RANK 

The number of leading 1's is the rank of the matrix.  Rank is also defined as the dimension of the largest 

square submatrix having a nonzero determinant.  The rank is also the number of vectors required to form 

a basis of the span of a matrix. 
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THE IDENTITY MATRIX 

In this case, the rref of  A  is the identity matrix, denoted  In  characterized by the 

diagonal row of 1's surrounded by zeros in a square matrix.  When a vector is 

multiplied by an identity matrix of the same dimension, the product is the vector 

itself,  Inv = v. 

 

rref( )A =

















1 0 0

0 1 0

0 0 1

 

LINEAR TRANSFORMATION 

This system of equations can be represented in the form  Ax = b.  

This is also known as a linear transformation from x to b 

because the matrix  A  transforms the vector x into the vector b. 

0 1 3

2 2 1

3 1 2

 
 

=  
  

A
 

x =

















x

y

z

 
b =

















5

11

13

 

ADJOINT 

For a 2×2 matrix, the adjoint is: 

 where A =










a b

c d
,   adj

d b

c a

− 
=  

− 
A  

For a 3×3 and higher 

matrix, the adjoint is the 

transpose of the matrix after 

all elements have been 

replaced by their cofactors 

(the determinants of the 

submatrices formed when the 

row and column of a 

particular element are 

excluded).  Note the pattern 

of signs beginning with 

positive in the upper-left 

corner of the matrix. 

where 

a b c

B d e f

g h i

 
 

=  
  

, 

adj 

T

e f d f d e e f b c b c

h i g i g h h i h i e f

b c a c a b d f a c a c

h i g i g h g i g i d f

b c a c a b d e a b a b

e f d f d e g h g h d e

   
− −   

   
   
   = − − = − −
   
   
   − −
      

B
 

INVERTIBLE MATRICES 

A matrix is invertible if it is a square matrix with a determinant not equal to 0.  The reduced row echelon 

form of an invertible matrix is the identity matrix  rref(A) = In.  The determinant of an inverse matrix is 

equal to the inverse of the determinant of the original matrix:  det(A
-1

) = 1/det(A).  If  A  is an invertible 

n × n matrix then  rank(A) = n,  im(A) = R
n
,  ker(A) = {0},  the vectors of  A  are linearly independent,  0 

is not an eigenvalue of  A,  the linear system  Ax = b  has a unique solution  x, for all  b  in R
n
. 

THE INVERSE TRANSFORMATION 

If  A  is an invertible matrix, the inverse matrix could be 

used to transform b into x,  Ax = b,  A
-1

b = x.  An invertible 

linear transform such as this is called an isomorphism. 

0 1 3

2 2 1

3 1 2

 
 

=  
  

A
     1

0.23 0.08 0.38

0.08 0.69 0.46

0.31 0.23 0.15

−

− − 
 

≅ − 
 − 

A
 

 

A matrix multiplied by its inverse yields the identity matrix.   

BB
-1

 = In 
1 1 1

2 3 2

3 8 2

10 6 1

2 1 0

7 5 1

1 0 0

0 1 0

0 0 1

















−

−

− −

















=
















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FINDING THE INVERSE MATRIX – Method 1 

To calculate the inverse 

matrix, consider the 

invertible 3×3 matrix  B.   

1 1 1

2 3 2

3 8 2

 
 

=  
  

B  
1) Rewrite the matrix, 

adding the identity 

matrix to the right. 

1 1 1

2 3 2

3 8 2

1 0 0

0 1 0

0 0 1

















 

2) Perform row operations on the 3×6 matrix to put  B  in rref form.  Three 

types of row operations are:  1) Each element of a row may be multiplied or 

divided by a number, 2) Two rows may exchange positions, 3) a multiple of 

one row may be added/subtracted to another. 

1 0 0

0 1 0

0 0 1

10 6 1

2 1 0

7 5 1

−

−

− −

















 

3) The inverse of  B  is now 

in the 3×3 matrix to the 

right. 

1

10 6 1

2 1 0

7 5 1

−

− 
 

= − 
 − − 

B  

 

If a matrix is orthogonal, its inverse can be found simply by taking the transpose. 

FINDING THE INVERSE MATRIX – Method 2 

To calculate the 

inverse matrix, 

consider the invertible 

3×3 matrix  B.   

1 1 1

2 3 2

3 8 2

 
 

=  
  

B  

 1) First we must find the adjoint of 

matrix B.  The adjoint of B is the 

transpose of matrix B after all 

elements have been replaced by their 

cofactors.  (The method of finding 

the adjoint of a 2×2 matrix is 

different; see page 4.)  The | | 

notation means "the determinant 

of". 

3 2 2 2 2 3

8 2 3 2 3 8

1 1 1 1 1 1
adj 

8 2 3 2 3 8

1 1 1 1 1 1

3 2 2 2 2 3

T

 
− 

 
 
 = − −
 
 
 −
  

B

 

2) Calculating the 

determinants we get. 
10 2 7

adj 6 1 5

1 0 1

T
− 
 

= − − 
 − − 

B  

3) And then taking the 

transpose we get. 
10 6 1

adj 2 1 0

7 5 1

− − 
 

= − 
 − − 

B

 

4) Now we need the 

determinant of B. 
1 1 1

det 2 3 2 3 2 2 3 2 8 3 3 2 8 2 2 1

3 8 2

 
 

= × + × + × − × − × − × = − 
  

 

 

 The formula for the 

inverse matrix is 

1 adj 

det

− =
B

B
B

 

 5) Filling in the values, 

we have the solution. 

1

10 6 1

2 1 0
10 6 1

7 5 1
2 1 0

1
7 5 1

−

− − 
 

−  − 
 − −   = = − −

 − 

B
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SYMMETRIC MATRICES 

A symmetric matrix is a square matrix that can be flipped across the diagonal without 

changing the elements, i.e. A = A
T
.  All eigenvalues of a symmetric matrix are real.  

Eigenvectors corresponding to distinct eigenvalues are mutually perpendicular. 

1 4 5

4 2 6

5 6 3

















 

A skew-symmetric matrix has off-diagonal elements mirrored by their negatives across 

the diagonal.  A
T
 = -A. 

















−−

−

3

2

1

cb

ca

ba

MISCELLANEOUS MATRICES 

The transpose of a 

matrix A is written A
T
 

and is the n × m matrix 

whose ijth entry is the 

jith entry of A. 

1 2 3

9 7 5

 
=  
 

A     

1 9

2 7

3 5

T

 
 

=  
  

A  

A diagonal matrix is composed 

of zeros except for the diagonal 

and is commutative with another 

diagonal matrix, i.e.  AB = BA. 

1 0 0

0 2 0

0 0 3

















 

A diagonal matrix of 

equal elements 

commutes with any 

matrix, i.e.  AB = BA. 

2 0 0

0 2 0

0 0 2

 
 

=  
  

A  

A lower triangular matrix has 0s above the 

diagonal.  Similarly an upper triangular matrix 

has 0s below. 

1 0 0

12 1 0

5 7 1−

















IMAGE OF A TRANSFORMATION 

The image of a transformation is its possible 

values.  The image of a matrix is the span of its 

columns.  An image has dimensions.  For example 

if the matrix has three rows the image is one of the 

following: 

1) 3-dimensional space, det(A) ≠ 0, rank = 3 

2) 2-dimensional plane, det(A) = 0, rank = 2 

3) 1-dimensional line, det(A) = 0, rank = 1 

4) 0-dimensional point at origin, A = 0 

Given the matrix:

0 1 3

2 2 1

3 1 2

 
 

=  
  

A
 
of the transforma-

tion  Ax, the image consists of all combinations of 

its (linearly independent) column vectors. 

















+

















+

















2

1

3

1

2

1

3

2

0

321 xxx
 

SPAN OF A MATRIX 

The span of a matrix is all of the linear combinations of its 

column vectors.  Only those column vectors which are 

linearly independent are required to define the span. 
1 2 3

0 1 3 0 1 3

2 2 1 span 2 2 1

3 1 2 3 1 2

c c c

       
       

= = + +       
              

A

KERNAL OF A TRANSFORMATION 

The kernal of a transformation is the set of vectors that 

are mapped by a matrix to zero.  The kernal of an 

invertible matrix is zero.  The dimension of a kernal is 

the number of vectors required to form the kernal.   

T C

x

x

x

( )x x= =

































=

1 1 1

1 2 3

1 3 5

0

1

2

3

       
kernal x = −

















1

2

1

LINEAR INDEPENDENCE 

A collection of vectors is linearly independent if none of them are a multiple of another, and none of 

them can be formed by summing multiples of others in the collection. 
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BASIS 

A basis of the span of a matrix is a group of linearly independent vectors which span the matrix.  These 

vectors are not unique.  The number of vectors required to form a basis is equal to the rank of the matrix.  

A basis of the span can usually be formed by incorporating those column vectors of a matrix 

corresponding to the position of leading 1’s in the rref matrix; these are called pivot columns.  The 

empty set  θ  is a basis of the space {0}.  There is also basis of the kernal, basis of the image, eigenbasis, 

orthonormal basis, etc.  In general terms, basis infers a minimum sample needed to define something. 

TRACE 

A trace is the sum of the diagonal elements of a square matrix and is written tr(A). 

ORTHONORMAL VECTORS 

Vectors are orthonormal if they are all unit vectors (length =1) and are orthogonal (perpendicular) to 

one another.  Orthonormal vectors are linearly independent.  Their dot product of orthogonal vectors is 

zero. 

ORTHOGONAL MATRIX 

An orthogonal matrix is composed only of orthonormal vectors; it has a determinant of either 1 or -1.  

An orthogonal matrix of determinant 1 is a rotation matrix.  Its use in a linear transformation is called a 

rotation because it rotates the coordinate system.  Matrix A  is orthogonal iff A
T
A = In, or equivalently  

A
-1

 = A
T
. 

ORTHOGONAL PROJECTION 

V is an n × m matrix.  v1, v2, … vm are an orthonormal basis of V.  For any vector x in ℜ
n
 there is a 

unique vector w in V such that x ⊥ w.  The 

vector w is called the orthogonal projection 

of x onto V.  see also Gram-Schmidt.pdf 

EIGENVECTORS AND EIGENVALUES 

Given a square matrix A, an eigenvector is any vector v such that Av is a scalar multiple of A.  The 

eigenvalue would be the scalar for which this is true.  = λAv v .  To determine the eigenvalues, solve 

the characteristic polynomial  det(λIn - A) = 0  for values of λ.  Then convert to rref form and solve for 

the coefficients as though it was a matrix of simultaneous equations.  This forms a column vector which 

is an eigenvector.  Where there are 0's, you can let the coefficient equal 1. 

EIGENSPACE 

The eigenspace associated with an eigenvalue λ of an n × n matrix is the kernal of the matrix A - λIn and 

is denoted by Eλ.  Eλ consists of all solutions v of the equation  Av = λv.  In other words, Eλ consists of 

all eigenvectors with eigenvalue λ, together with the zero vector. 

EIGENBASIS 

An eigenbasis of an n × n matrix A is a basis of R
n
 consisting of unit eigenvectors of A.  To convert a 

vector to a unit vector, sum the squares of its elements and take the inverse square root.  Multiply the 

vector by this value. 

GEOMETRIC MULTIPLICITY 

The geometric multiplicity for a given eigenvalue λ is the dimension of the eigenspace Eλ; in other 

words, the number of eigenvectors of Eλ.  The geometric multiplicity for a given λ is equal to the 

number of leading zeros in the top row of  rref(A - λIn).. 

ALGEBRAIC MULTIPLICITY 

The algebraic multiplicity for a given eigenvalue λ is the number of times the eigenvalue is repeated.  

For example if the characteristic polynomial is (λ-1)
2
(λ-2)

3
 then for λ = 1 the algebraic multiplicity is 2 

and for λ = 2 the algebraic multiplicity is 3.  The algebraic multiplicity is greater than or equal to the 

geometric multiplicity. 

ORTHOGONAL PROJECTION OF x ONTO V 

mmV vxvvxvxw )(...)(proj 11 ⋅++⋅==  



Tom Penick    tom@tomzap.com    www.tomzap.com/notes    3/8/2015   Page 8 of 10 

 

LAPLACE EXPANSION BY MINORS 

This is a method for finding the determinant of larger matrices.  The process is simplified if some of the 

elements are zeros.  1) Select the row or column with the most zeros.  2) Beginning with the first element 

of this selected vector, consider a submatrix of all elements that do not belong to either the row or 

column that this first element occupies.  This is easier to visualize by drawing a horizontal and a vertical 

line through the selected element, eliminating those elements which do not belong to the submatrix.  3) 

Multiply the determinant of the submatrix by the value of the element.  4) Repeat the process for each 

element in the selected vector.  5) Sum the results according to the rule of signs, that is reverse the sign 

of values represented by elements whose subscripts i & j sum to an odd number. 

DIAGONALIZABLE 

If an n × n matrix has n distinct eigenvalues, then it is diagonalizable. 

NULLITY 

The nullity of a matrix is the number of columns in the result of the matlab command  null(A). 

SINGULAR MATRIX 

A singular matrix is not invertible. 

SIMILARITY 

Matrix A is similar to matrix B if  S
-1

AS = B.  Similar matrices have the same eigenvalues with the same 

geometric and algebraic multiplicities.  Their determinants, traces, and rank are all equal 

REFLECTION 

Given that L is a line in ℜ
n
, v is a vector in ℜ

n
 and u 

is a unit vector along L in ℜ
n
, the reflection of v in L 

is: 

DOT PRODUCT 

The dot product of two matrices is equal to 

the transpose of the first matrix multiplied 

by the second matrix. 

 
T⋅ =A B A B  Example:  [ ] 3

1

2

2

321

1

2

2

3

2

1

=

















−

=

















−

⋅
















 

ORTHOGONAL DIAGONALIZATION 

A matrix A is diagonalizable if and only if A is symmetric.  1−=D S AS   where D is a diagonal matrix 

whose diagonal is composed of the eigenvalues of A with the remainder of the elements equal to zero, S 

is an orthogonal matrix whose column vectors form the eigenbasis of A.  To find D we need only find the 

eigenvalues of A.  To find S we find the eigenvectors of A.  If A has distinct eigenvalues, the unit 

eigenvectors form S, otherwise we have more work to do.   

For example if we have a 3 × 3 matrix with eigenvalues 9, 0, 0, we first find a linearly independent 

eigenvector for each eigenvalue.  The eigenvector for λ = 9 (we'll call it y) will be unique and will 

become a vector in matrix S.  We must choose eigenvectors for λ = 0 so that one of them is orthogonal 

(we'll call it x) to the eigenvector y from λ = 9, by keeping in mind that the dot product of two orthogonal 

vectors is zero.  The remaining non-orthogonal eigenvector from λ = 9 we will call v.  Now from the 

eigenspace  x, v  we must find an orthogonal vector to replace v.  Using the formula for orthogonal 

projection  vxvxw )(proj ⋅== V
,  we plug in our values for x and v and obtain vector w, orthogonal to x.  

Now matrix S = [w x y].  We can check our work by performing the calculation  S
-1

AS  to see if we get 

matrix D. 

PRINCIPLE SUBMATRICES 

Give a matrix:  

















987

654

321
,  the principle submatrices are:  [ ]1 ,  










54

21
,  and 

















987

654

321
 

vuvuvvv −⋅=−= )(2)proj(2ref LL  
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COORDINATE VECTOR 

If we have a basis B consisting of vectors b,1 b2, · · ·  bn, then 

any vector x in R
n
 can be written as: 

The vector 



















=

nc

c

c

M

2

1

c  is the coordinate vector of x and: 

 

nnccc bbbx +++= L2211  

 

 

=Bc x  

Determining the Coordinate Vector 
Given B and x, we find c by forming an augmented matrix from B and x, taking it to rref form and 

reading c from the right-hand column. 

QUADRATIC FORM 

A function such as  2

221

2

121 876),()( xxxxxxqq +−==x   is called 

a quadratic form and may be written in the form  xxx Aq ⋅=)( .  

Notice in the example at right how the  -7x1x2  term is split in half 

and used to form the "symmetric" part of the symmetric matrix. 

POSITIVE DEFINITE:  Matrix A is positive definite if all 

eigenvalues are greater than 0, in which case q(x) is positive for 

all nonzero x, and the determinants of all principle submatrices 

will be greater than 0. 

NEGATIVE DEFINITE:  Matrix A is negative definite if all 

eigenvalues are less than 0, in which case q(x) is negative for all 

nonzero x. 

INDEFINITE:  Matrix A is indefinite if there are negative and 

positive eigenvalues in which case q(x) may also have negative 

and positive values. 

What about eigenvalues which include 0?  The definition here 

varies among authors. 

 

Example: 
2

221

2

121 876),()( xxxxxxqq +−==x  

xxx Aq ⋅=)(  










+−

−
⋅







=

212
7

22
7

1

2

1

8

6
)(

xx

xx

x

x
q x  

 

















−

−
⋅







=

2

1

2
7

2
7

2

1

8

6

x

x

x

x
 










−

−
=

8

6

2
7

2
7

A  

DISTANCE OF TWO ELEMENTS OF AN INNER PRODUCT 

 
[ ]∫ −=−=

b

a
dttgtfgfgf,

2
)()()(dist  

INNER PRODUCT 

An inner product in a linear space V is a rule that assigns 

a real scalar (denoted by gf ,  to any pair f, g of 

elements of V, such that the following properties hold for 

all f, g, h in V, and all c in R.  A linear space endowed 

with an inner product is called an inner product space. 

 a. fggf ,, =  

b. hghfhgf ,,, +=+  

c. gfcgcf ,, =  

d. 0, >ff  for all nonzero f in V. 

 

Two elements  f, g  of an inner product space are orthogonal 

if: 
0, =gf  
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NORM 

The norm of a vector is its length: 22

2

2

1 nvvv +++= Lv  

 

The norm of an element   f  of an inner product space is: ∫==
b

a
dtffff

2,  

 

 

 


